Computational design of twisty joints and puzzles

We present the first computational method that allows ordinary users to create complex twisty joints and puzzles inspired by the Rubik's Cube mechanism. Given a user-supplied 3D model and a small subset of rotation axes, our method automatically adjusts those rotation axes and adds others to construct a "non-blocking" twisty joint in the shape of the 3D model. Our method outputs the shapes of pieces which can be directly 3D printed and assembled into an interlocking puzzle. We develop a group-theoretic approach to representing a wide class of twisty puzzles by establishing a connection between non-blocking twisty joints and the finite subgroups of the rotation group SO(3). The theoretical foundation enables us to build an efficient system for automatically completing the set of rotation axes and fast collision detection between pieces. We also generalize the Rubik's Cube mechanism to a large family of twisty puzzles.

[1]  Peng Song,et al.  Recursive interlocking puzzles , 2012, ACM Trans. Graph..

[2]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[3]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[6]  Tomas Rokicki,et al.  God's number is 20 , 2010 .

[7]  Snigdhansu Chatterjee,et al.  Procrustes Problems , 2005, Technometrics.

[8]  Wojciech Matusik,et al.  Computing and Fabricating Multiplanar Models , 2013, Comput. Graph. Forum.

[9]  D. Epstein,et al.  THREE‐DIMENSIONAL GEOMETRY AND TOPOLOGY, VOLUME 1 (Princeton Mathematical Series 35) , 2000 .

[10]  Takeo Igarashi,et al.  Sensitive couture for interactive garment modeling and editing , 2011, ACM Trans. Graph..

[11]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, ACM Trans. Graph..

[12]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[13]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[14]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[15]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[16]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[17]  Takeo Igarashi,et al.  Plushie: an interactive design system for plush toys , 2007, ACM Trans. Graph..

[18]  Takeo Igarashi,et al.  Beady: interactive beadwork design and construction , 2011, SA '11.

[19]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[20]  Eitan Grinspun,et al.  Designing inflatable structures , 2014, ACM Trans. Graph..

[21]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[22]  Chi-Wing Fu,et al.  Making burr puzzles from 3D models , 2011, ACM Trans. Graph..

[23]  SunTimothy,et al.  Computational design of twisty joints and puzzles , 2015 .

[24]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[25]  Ding Xilun,et al.  Configuration Transformation Theory from a Chain-type Reconfigurable Modular Mechanism-Rubik's Snake , 2011 .

[26]  Wojciech Matusik,et al.  Boxelization: folding 3D objects into boxes , 2014, ACM Trans. Graph..

[27]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[28]  Chi-Wing Fu,et al.  3D polyomino puzzle , 2009, SIGGRAPH 2009.

[29]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.