Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms

AbstractCauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.

[1]  D. Thwaites CHAPTER 12 , 1999 .

[2]  David J. Stump Ontological relativity , 2019, The Routledge Handbook of Philosophy of Relativism.

[3]  Hide Ishiguro,et al.  Leibniz's philosophy of logic and language (2. ed.) , 1990 .

[4]  Karel Hrbacek,et al.  Approaches to analysis with infinitesimals following Robinson, Nelson, and others , 2017, 1703.00425.

[5]  Vladimir Kanovei,et al.  Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.

[6]  Marx W. Wartofsky The Relation Between Philosophy of Science and History of Science , 1976 .

[7]  T. Kuhn The structure of scientific revolutions, 3rd ed. , 1996 .

[8]  Mikhail G. Katz,et al.  The Mathematical Intelligencer Flunks the Olympics , 2016, ArXiv.

[9]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[10]  K. Easwaran Regularity and Hyperreal Credences , 2014 .

[11]  G. Ferraro Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .

[12]  Umberto Bottazzini,et al.  The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .

[13]  J. Cleave Cauchy, Convergence and Continuity , 1971, The British Journal for the Philosophy of Science.

[14]  R. E. Bradley,et al.  Cauchy’s Cours d’analyse: An Annotated Translation , 2009 .

[15]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[16]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[17]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[18]  Vladimir Kanovei,et al.  Proofs and Retributions, Or: Why Sarah Can’t Take Limits , 2015 .

[19]  Paolo Mancosu Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .

[20]  Vladimir Kanovei,et al.  Toward a History of Mathematics Focused on Procedures , 2016, 1609.04531.

[21]  Max Planck,et al.  Scientific Autobiography and Other Papers. , 1951 .

[22]  D. Schaps The Woman Least Mentioned: Etiquette And Women's Names , 1977, The Classical Quarterly.

[23]  E. Festa La querelle de l'atomisme : Galilée, Cavalieri et les jésuites , 1990 .

[24]  Alexandre V. Borovik,et al.  A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos , 2016, Logica Universalis.

[25]  J. Earman Infinities, infinitesimals, and indivisibles: the leibnizian labyrinth , 1975 .

[26]  Gottfried Wilhelm Freiherr von Leibniz,et al.  Historia et origo, calculi differentialis a G.G. Leibnitio conscripta : zur zweiten Säcularfeier des Leibnizischen geburtstages aus den Handschriften der Königlichen Bibliothek zu Hannover , 1846 .

[27]  H. K. Sørensen Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem , 2005 .

[28]  David Sherry,et al.  Fields and the Intelligibility of Contact Action , 2015, Philosophy.

[29]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[30]  C. Gilain Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .

[31]  Vladimir Kanovei,et al.  Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.

[32]  Joseph W Dauben,et al.  Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics , 1988 .

[33]  W. Luxemburg Non-Standard Analysis , 1977 .

[34]  Unione matematica italiana Bollettino di storia delle scienze matematiche , 1981 .

[35]  H. T. H. P. Einleitung in die Mengenlehre , 1929, Nature.

[36]  Yaroslav D. Sergeyev,et al.  The Olympic Medals Ranks, Lexicographic Ordering, and Numerical Infinities , 2015, 1509.04313.

[37]  Sam Sanders,et al.  Reverse formalism 16 , 2017, Synthese.

[38]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[39]  Michiyo Nakane,et al.  Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in ϵ – δ style , 2014 .

[40]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[41]  Piotr Blaszczyk,et al.  Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[42]  Piotr Blaszczyk,et al.  Is mathematical history written by the victors , 2013, 1306.5973.

[43]  Euler’s definition of the derivative , 2007 .

[44]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[45]  Cauchy and the infinitely small , 1978 .

[46]  Paul R. Halmos,et al.  I Want to Be A Mathematician: An Automathography , 1986 .

[47]  Bar-Ilan University,et al.  From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .

[48]  Ton Lindstrøm Nonstandard Analysis and its Applications: AN INVITATION TO NONSTANDARD ANALYSIS , 1988 .

[49]  Nonstandard Analysis, Infinitesimals, and the History of Calculus , 2015 .

[50]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[51]  A. Alexander Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World , 2014 .

[52]  Hide Ishiguro,et al.  Leibniz's Philosophy of Logic and Language , 1972 .

[53]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[54]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .

[55]  S. Unguru Fermat revivified, explained, and regained , 1977 .

[56]  M. Hellyer "Because the Authority of My Superiors Commands": Censorship, Physics and the German Jesuits 1 , 1996 .

[57]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[58]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[59]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[60]  Karin U. Katz,et al.  Gregory’s Sixth Operation , 2016, The Best Writing on Mathematics 2019.

[61]  Judith V. Grabiner,et al.  The origins of Cauchy's rigorous calculus , 1981 .

[62]  Paul Benacerraf,et al.  What the numbers could not be , 1983 .

[63]  Patrick Riley,et al.  Leibniz's Philosophy of Logic and Language , 1973 .

[64]  Judith V. Grabiner,et al.  The Changing Concept of Change: The Derivative from Fermat to Weierstrass , 1983 .

[65]  N. H. Bingham,et al.  THE DEVELOPMENT OF THE FOUNDATIONS OF MATHEMATICAL ANALYSIS FROM EULER TO RIEMANN , 1972 .

[66]  G. Leibniz,et al.  The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .

[67]  Paul R. Halmos,et al.  I Want to be a Mathematician , 1985 .

[68]  Curtis Duane Tuckey,et al.  Higher Trigonometry, Hyperreal Numbers, and Euler's Analysis of Infinities , 2001 .

[69]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[70]  Mariano Hormigón Blánquez Cours d'analyse de l'école royale polytechnique , 2004 .

[71]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[72]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[73]  Mikhail G. Katz,et al.  Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .

[74]  A. Cauchy Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .

[75]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[76]  T. Tao Hilbert's Fifth Problem and Related Topics , 2014 .

[77]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[78]  E. Scholz Umberto Bottazzini: The Higher Calculus: A History of Real and Complex analysis from Euler to Weierstrass. Translated from the Italian by W. van Egmond. New York/Berlin/Heidelberg/London/Paris/Tokyo: Springer 1986. 8 Fig. VII + 332 Seiten. , 1987 .

[79]  A. Kock Synthetic Differential Geometry , 1981 .

[80]  Mikhail G. Katz,et al.  Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..

[81]  Terence Tao,et al.  Sum-avoiding sets in groups , 2016, 1603.03068.

[82]  Vladimir Kanovei,et al.  Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.

[83]  Judith V. Grabiner,et al.  Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus , 1983 .

[84]  Poincaré et les dévelopmpments asymptotiques (première partie) , 2012 .

[85]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[86]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[87]  H. Bosmans Andre Tacquet (S. J.) et son traite d' ≪ Arithmetique theorique et pratique ≫ , 1927, Isis.

[88]  Errett Bishop,et al.  Review: H. Jerome Keisler, Elementary calculus , 1977 .

[89]  Augustin-Louis Cauchy Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .

[90]  Karin U. Katz,et al.  Euler’s Lute and Edwards’s Oud , 2015, 1506.02586.

[91]  Emanuele Bottazzi,et al.  Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.

[92]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[93]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[94]  Abraham Robinson Selected papers of Abraham Robinson , 1978 .

[95]  M. McKinzie,et al.  Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .

[96]  G. Leibniz,et al.  La naissance du calcul différentiel : 26 articles des Acta eruditorum , 1989 .

[97]  TO BE OR NOT TO BE CONSTRUCTIVE , 2017 .

[98]  Jeremy Gray The Real and the Complex: A History of Analysis in the 19th Century , 2015 .

[99]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.