Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms
暂无分享,去创建一个
Vladimir Kanovei | Alexandre Borovik | Mikhail G. Katz | Karin U. Katz | David Sherry | Semen S. Kutateladze | Piotr Błaszczyk | A. Borovik | S. Kutateladze | V. Kanovei | David Sherry | David M. Schaps | M. Katz | Tiziana Bascelli | Piotr Błaszczyk | D. Schaps | Thomas McGaffey | T. Mcgaffey | Tiziana Bascelli | Semen Samsonovich Kutateladze
[1] D. Thwaites. CHAPTER 12 , 1999 .
[2] David J. Stump. Ontological relativity , 2019, The Routledge Handbook of Philosophy of Relativism.
[3] Hide Ishiguro,et al. Leibniz's philosophy of logic and language (2. ed.) , 1990 .
[4] Karel Hrbacek,et al. Approaches to analysis with infinitesimals following Robinson, Nelson, and others , 2017, 1703.00425.
[5] Vladimir Kanovei,et al. Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.
[6] Marx W. Wartofsky. The Relation Between Philosophy of Science and History of Science , 1976 .
[7] T. Kuhn. The structure of scientific revolutions, 3rd ed. , 1996 .
[8] Mikhail G. Katz,et al. The Mathematical Intelligencer Flunks the Olympics , 2016, ArXiv.
[9] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[10] K. Easwaran. Regularity and Hyperreal Credences , 2014 .
[11] G. Ferraro. Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .
[12] Umberto Bottazzini,et al. The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .
[13] J. Cleave. Cauchy, Convergence and Continuity , 1971, The British Journal for the Philosophy of Science.
[14] R. E. Bradley,et al. Cauchy’s Cours d’analyse: An Annotated Translation , 2009 .
[15] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[16] Paul Benacerraf,et al. Philosophy of mathematics: What numbers could not be , 1965 .
[17] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[18] Vladimir Kanovei,et al. Proofs and Retributions, Or: Why Sarah Can’t Take Limits , 2015 .
[19] Paolo Mancosu. Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .
[20] Vladimir Kanovei,et al. Toward a History of Mathematics Focused on Procedures , 2016, 1609.04531.
[21] Max Planck,et al. Scientific Autobiography and Other Papers. , 1951 .
[22] D. Schaps. The Woman Least Mentioned: Etiquette And Women's Names , 1977, The Classical Quarterly.
[23] E. Festa. La querelle de l'atomisme : Galilée, Cavalieri et les jésuites , 1990 .
[24] Alexandre V. Borovik,et al. A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos , 2016, Logica Universalis.
[25] J. Earman. Infinities, infinitesimals, and indivisibles: the leibnizian labyrinth , 1975 .
[26] Gottfried Wilhelm Freiherr von Leibniz,et al. Historia et origo, calculi differentialis a G.G. Leibnitio conscripta : zur zweiten Säcularfeier des Leibnizischen geburtstages aus den Handschriften der Königlichen Bibliothek zu Hannover , 1846 .
[27] H. K. Sørensen. Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem , 2005 .
[28] David Sherry,et al. Fields and the Intelligibility of Contact Action , 2015, Philosophy.
[29] Martin Davis,et al. Applied Nonstandard Analysis , 1977 .
[30] C. Gilain. Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .
[31] Vladimir Kanovei,et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.
[32] Joseph W Dauben,et al. Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics , 1988 .
[33] W. Luxemburg. Non-Standard Analysis , 1977 .
[34] Unione matematica italiana. Bollettino di storia delle scienze matematiche , 1981 .
[35] H. T. H. P.. Einleitung in die Mengenlehre , 1929, Nature.
[36] Yaroslav D. Sergeyev,et al. The Olympic Medals Ranks, Lexicographic Ordering, and Numerical Infinities , 2015, 1509.04313.
[37] Sam Sanders,et al. Reverse formalism 16 , 2017, Synthese.
[38] T. Kuhn,et al. The Structure of Scientific Revolutions. , 1964 .
[39] Michiyo Nakane,et al. Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in ϵ – δ style , 2014 .
[40] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[41] Piotr Blaszczyk,et al. Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[42] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[43] Euler’s definition of the derivative , 2007 .
[44] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[45] Cauchy and the infinitely small , 1978 .
[46] Paul R. Halmos,et al. I Want to Be A Mathematician: An Automathography , 1986 .
[47] Bar-Ilan University,et al. From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .
[48] Ton Lindstrøm. Nonstandard Analysis and its Applications: AN INVITATION TO NONSTANDARD ANALYSIS , 1988 .
[49] Nonstandard Analysis, Infinitesimals, and the History of Calculus , 2015 .
[50] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[51] A. Alexander. Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World , 2014 .
[52] Hide Ishiguro,et al. Leibniz's Philosophy of Logic and Language , 1972 .
[53] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[54] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .
[55] S. Unguru. Fermat revivified, explained, and regained , 1977 .
[56] M. Hellyer. "Because the Authority of My Superiors Commands": Censorship, Physics and the German Jesuits 1 , 1996 .
[57] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[58] Charles Coulston Gillispie,et al. Dictionary of scientific biography , 1970 .
[59] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[60] Karin U. Katz,et al. Gregory’s Sixth Operation , 2016, The Best Writing on Mathematics 2019.
[61] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .
[62] Paul Benacerraf,et al. What the numbers could not be , 1983 .
[63] Patrick Riley,et al. Leibniz's Philosophy of Logic and Language , 1973 .
[64] Judith V. Grabiner,et al. The Changing Concept of Change: The Derivative from Fermat to Weierstrass , 1983 .
[65] N. H. Bingham,et al. THE DEVELOPMENT OF THE FOUNDATIONS OF MATHEMATICAL ANALYSIS FROM EULER TO RIEMANN , 1972 .
[66] G. Leibniz,et al. The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .
[67] Paul R. Halmos,et al. I Want to be a Mathematician , 1985 .
[68] Curtis Duane Tuckey,et al. Higher Trigonometry, Hyperreal Numbers, and Euler's Analysis of Infinities , 2001 .
[69] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[70] Mariano Hormigón Blánquez. Cours d'analyse de l'école royale polytechnique , 2004 .
[71] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[72] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[73] Mikhail G. Katz,et al. Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .
[74] A. Cauchy. Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .
[75] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[76] T. Tao. Hilbert's Fifth Problem and Related Topics , 2014 .
[77] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[78] E. Scholz. Umberto Bottazzini: The Higher Calculus: A History of Real and Complex analysis from Euler to Weierstrass. Translated from the Italian by W. van Egmond. New York/Berlin/Heidelberg/London/Paris/Tokyo: Springer 1986. 8 Fig. VII + 332 Seiten. , 1987 .
[79] A. Kock. Synthetic Differential Geometry , 1981 .
[80] Mikhail G. Katz,et al. Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..
[81] Terence Tao,et al. Sum-avoiding sets in groups , 2016, 1603.03068.
[82] Vladimir Kanovei,et al. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.
[83] Judith V. Grabiner,et al. Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus , 1983 .
[84] Poincaré et les dévelopmpments asymptotiques (première partie) , 2012 .
[85] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[86] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[87] H. Bosmans. Andre Tacquet (S. J.) et son traite d' ≪ Arithmetique theorique et pratique ≫ , 1927, Isis.
[88] Errett Bishop,et al. Review: H. Jerome Keisler, Elementary calculus , 1977 .
[89] Augustin-Louis Cauchy. Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .
[90] Karin U. Katz,et al. Euler’s Lute and Edwards’s Oud , 2015, 1506.02586.
[91] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[92] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[93] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[94] Abraham Robinson. Selected papers of Abraham Robinson , 1978 .
[95] M. McKinzie,et al. Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .
[96] G. Leibniz,et al. La naissance du calcul différentiel : 26 articles des Acta eruditorum , 1989 .
[97] TO BE OR NOT TO BE CONSTRUCTIVE , 2017 .
[98] Jeremy Gray. The Real and the Complex: A History of Analysis in the 19th Century , 2015 .
[99] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.