Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode

Abstract The pseudocapacitance of nanocrystalline RuO 2 with BET surface area of 42 m 2  g −1 was evaluated using a RuO 2 modified Glassy Carbon (RuO 2 /GC) thin film electrode. The charge storage behavior of the RuO 2 /GC thin film electrode was studied from fast to slow scan cyclic voltammetry between various potential windows. The utilization of the thin film electrode method for nanocrystalline RuO 2 with known specific surface area allowed a semi-quantitative understanding of the electric double-layer capacitance ( C dl ), adsorption related charge ( C ad ), and the irreversible redox related charge ( C irr ) per unit mass and surface area of RuO 2 . Comparison of the cyclic voltammograms between different voltage windows revealed that the contribution from C irr is especially dominant below 0.4 V (versus RHE) at slow scan rates.

[1]  Y. Murakami,et al.  Extremely High Pseudo-Capacitance of RuO2 Highly Dispersed on Glassy Carbon , 1998 .

[2]  M. Vuković,et al.  Electrochemical quartz crystal microbalance study of electrodeposited ruthenium , 1999 .

[3]  M. Wohlfahrt‐Mehrens,et al.  New materials for supercapacitors , 2002 .

[4]  Bin Chen,et al.  Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor , 2001 .

[5]  S. Trasatti,et al.  Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour , 1971 .

[6]  P. Soudan,et al.  Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors , 2002 .

[7]  Jim P. Zheng,et al.  Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors , 1999 .

[8]  B. Conway,et al.  Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes , 1978 .

[9]  Nae-Lih Wu,et al.  Nanocrystalline oxide supercapacitors , 2002 .

[10]  M. Milun,et al.  Electron spectroscopy characterization of an activated ruthenium electrode , 1993 .

[11]  J. Horkans,et al.  Alloying of a less noble metal in electrodeposited Cu through underpotential deposition , 1995 .

[12]  W. O'grady,et al.  Electrochemistry of sub-monolayer silver deposits on single crystal RuO2 (110), (001) and (111) electrodes , 1987 .

[13]  J. Rishpon,et al.  Resolution of Fast and Slow Charging Processes in Ruthenium Oxide Films: An AC Impedance and Optical Investigation , 1984 .

[14]  H. Gasteiger,et al.  Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration , 1998 .

[15]  O. J. Murphy,et al.  Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes , 1979 .

[16]  Y. Murakami,et al.  Design of oxide electrodes with large surface area , 2000 .

[17]  A. Battisti,et al.  Examination of RuO2 single-crystal surfaces: charge storage mechanism in H2SO4 aqueous solution , 2002 .

[18]  W. O'grady,et al.  Effect of Crystallographic Orientation of Single‐Crystal RuO2 Electrodes on the Hydrogen Adsorption Reactions , 1984 .

[19]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[20]  O. J. Murphy,et al.  Surface area—Voltammetric charge correlation for RuO2/TiO2-based anodes , 1980 .

[21]  K. Kobayakawa,et al.  High Energy Electrochemical Capacitor Materials Prepared by Loading Ruthenium Oxide on Activated Carbon , 2002 .

[22]  S. Ardizzone,et al.  Influence of hydrogen evolution on the voltammetric charge of RuO2 electrodes , 1989 .

[23]  M. Vuković Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode , 1990 .

[24]  K. Ayers,et al.  Electrochemical characterization of high-surface-area catalysts and other nanoscale electroactive materials at sticky-carbon electrodes , 2002 .

[25]  B. Dunn,et al.  Morphology and Electrochemistry of Ruthenium/Carbon Aerogel Nanostructures , 1999 .

[26]  S. Trasatti,et al.  Influence of the preparation temperature of Ruthenium dioxide on its point of zero charge , 1983 .

[27]  D. Guay,et al.  Activation of Ruthenium Oxide, Iridium Oxide, and Mixed RuxIr1 − x Oxide Electrodes during Cathodic Polarization and Hydrogen Evolution , 1997 .

[28]  Jim P. Zheng,et al.  Ruthenium Oxide Film Electrodes Prepared at Low Temperatures for Electrochemical Capacitors , 2001 .

[29]  James A. Ritter,et al.  Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels , 1999 .

[30]  M. Milun,et al.  Anodic stability of electrodeposited ruthenium: galvanostatic, thermogravimetric and X-ray photoelectron spectroscopy studies , 1995 .

[31]  M. Vuković,et al.  Electrochemical properties of ruthenised electrodes in the oxide layer region , 2000 .

[32]  Annamalai Senthil Kumar,et al.  Studies of electrochemical behaviour of RuO 2 -PVC film electrodes: dependence on oxide preparation temperature , 2000 .

[33]  W. O'grady,et al.  Single crystals as model electrocatalysts: Oxygen evolution on RuO2 (110) , 1986 .

[34]  Wendy G. Pell,et al.  Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes , 1997 .

[35]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[36]  B. Conway,et al.  Electron Microscopy Study of Formation of Thick Oxide Films on Ir and Ru Electrodes , 1984 .

[37]  H. Angerstein-Kozlowska,et al.  Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments , 1975 .

[38]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[39]  S. Gottesfeld,et al.  Quartz crystal microbalance measurements during oxidation/reduction of hydrous Ir oxide electrodes , 1991 .

[40]  Ralph E. White,et al.  Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors , 2001 .

[41]  W. Sugimoto,et al.  Molybdenum Oxide/Carbon Composite Electrodes as Electrochemical Supercapacitors , 2001 .

[42]  B. Conway,et al.  The state of electrodeposited hydrogen at ruthenium electrodes , 1977 .

[43]  K. Kobayakawa,et al.  Electrochemical Behavior of Activated‐Carbon Capacitor Materials Loaded with Ruthenium Oxide , 1999 .

[44]  H. L. Park,et al.  Cyclic voltammetry on RuO2 (100), (101), (001) and (110) “as-grown” single-crystal surfaces , 1983 .

[45]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[46]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[47]  D. Scherson,et al.  In Situ Ru K-Edge X-Ray Absorption Fine Structure Studies of Electroprecipitated Ruthenium Dioxide Films with Relevance to Supercapacitor Applications , 2000 .

[48]  W. Sugimoto,et al.  Charge Storage Capabilities of Rutile-Type RuO2 ­ VO 2 Solid Solution for Electrochemical Supercapacitors , 2002 .

[49]  Jeffrey W. Long,et al.  Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials , 1999 .

[50]  Z. Ogumi,et al.  Electrochemical Oxidation and Reduction of the RuO2/Ti Electrode Surface , 1978 .

[51]  B. Conway,et al.  Electrocatalytic activation of ruthenium electrodes for the Cl2 and O2 evolution reactions by anodic/cathodic cycling , 1982 .