Complete type functionals for homogeneous time delay systems

[1]  Andrey Polyakov,et al.  Verification of ISS, iISS and IOSS properties applying weighted homogeneity , 2013, Syst. Control. Lett..

[2]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[3]  Gerson Portilla,et al.  Estimates for solutions of homogeneous time-delay systems: comparison of Lyapunov–Krasovskii and Lyapunov–Razumikhin techniques , 2021, Int. J. Control.

[4]  Wim Michiels,et al.  Characterizing and Computing the ${\cal H}_{2}$ Norm of Time-Delay Systems by Solving the Delay Lyapunov Equation , 2011, IEEE Transactions on Automatic Control.

[5]  Konstantin Zimenko,et al.  A note on delay robustness for homogeneous systems with negative degree , 2017, Autom..

[6]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[8]  Denis V. Efimov,et al.  Weighted Homogeneity for Time-Delay Systems: Finite-Time and Independent of Delay Stability , 2016, IEEE Transactions on Automatic Control.

[10]  Carlos Cuvas,et al.  Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays , 2017, Autom..

[11]  Denis V. Efimov,et al.  Development of Homogeneity Concept for Time-Delay Systems , 2014, SIAM J. Control. Optim..

[12]  A. Yu. Aleksandrov,et al.  On the asymptotic stability of solutions of nonlinear systems with delay , 2012 .

[13]  A. Yu. Aleksandrov,et al.  Delay-independent stability of homogeneous systems , 2014, Appl. Math. Lett..

[14]  Vladimir L. Kharitonov,et al.  Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems , 2003, Autom..

[15]  Alexey P. Zhabko,et al.  Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems , 2015, Autom..

[16]  Frédéric Gouaisbaut,et al.  Complete quadratic Lyapunov functionals for distributed delay systems , 2015, Autom..

[17]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[18]  Silviu-Iulian Niculescu,et al.  Estimates of the attraction region for a class of nonlinear time-delay systems , 2006, IMA J. Math. Control. Inf..

[19]  Sabine Mondié,et al.  Critical frequencies and parameters for linear delay systems: A Lyapunov matrix approach , 2013, Syst. Control. Lett..

[20]  Irina V. Medvedeva,et al.  A Novel Approach to Robust Stability Analysis of Linear Time-Delay Systems∗ , 2015 .

[21]  A. Yu. Aleksandrov,et al.  Delay-Independent Stability Conditions for Some Classes of Nonlinear Systems , 2014, IEEE Transactions on Automatic Control.