Non-LTE line formation for heavy elements in four very metal-poor stars

Aims. Stellar parameters and abundances of Na, Mg, Al, K, Ca, Sr, Ba, and Eu are determined for four very metal-poor (VMP) stars (−2.15 ≥ [Fe/H] ≥− 2.66). For two of them, HD 84937 and HD 122563, the fraction of the odd isotopes of Ba derived for the first time. Methods. Determination of an effective temperature, surface gravity, and element abundances was based on non-local thermodynamic equilibrium (non-LTE) line formation and analysis of high-resolution (R ∼ 60 000 and 90 000) high signal-to-noise (S/N ≥ 200) observed spectra. A model atom for H i is presented. An effective temperature was obtained from the Balmer Hα and Hβ line wing fits. The surface gravity was calculated from the Hipparcos parallax if available and the non-LTE ionization balance between Ca i and Ca ii. Based on the hyperfine structure affecting the Ba ii resonance line λ 4554, the fractional abundance of the odd isotopes of Ba was derived from a requirement that Ba abundances from the resonance line and subordinate lines of Ba ii must be equal. Results. For each star, non-LTE leads to a consistency of Teff from two Balmer lines and to a higher temperature compared to the LTE case, by up to 60 K. Non-LTE effects are important in spectroscopic determination of surface gravity from the ionization balance between Ca i and Ca ii. For each star with a known trigonometric surface gravity, non-LTE abundances from the lines of two ionization stages, Ca i and Ca ii, agree within the error bars, while a difference in the LTE abundances consists of 0.23 dex to 0.40 dex for different stars. Departures from LTE are found to be significant for all investigated atoms, and they strongly depend on stellar parameters. For HD 84937, the Eu/Ba ratio is consistent with the relative solar system r-process abundances, and the fraction of the odd isotopes of Ba, fodd, equals 0.43 ± 0.14. The latter can serve as an observational constraint on r-process models. The lower Eu/Ba ratio and fodd = 0.22 ± 0.15 found for HD 122563 suggest that the s-process or the unknown process has contributed significantly to the Ba abundance in this star.

[1]  N. Badnell,et al.  Atomic data from the IRON project. LXIV. Radiative transition rates and collision strengths for Ca II , 2007, 0704.3807.

[2]  K. Kratz,et al.  Explorations of the r-Processes: Comparisons between Calculations and Observations of Low-Metallicity Stars , 2007, astro-ph/0703091.

[3]  P. Barklem Non-LTE Balmer line formation in late-type spectra: effects of atomic processes involving hydrogen atoms , 2007, astro-ph/0702222.

[4]  Ukraine,et al.  NLTE determination of the sodium abundance in a homogeneous sample of extremely metal-poor stars , 2007, astro-ph/0701199.

[5]  U. Hertfordshire,et al.  Experimental Mg I oscillator strengths and radiative lifetimes for astrophysical applications on metal-poor stars. New data for the Mg I b triplet , 2006, astro-ph/0610033.

[6]  A. Korn,et al.  A non-LTE study of neutral and singly-ionized calcium in late-type stars , 2006, astro-ph/0609527.

[7]  Jian-rong Shi,et al.  Potassium abundances in nearby metal-poor stars , 2006 .

[8]  Jian-rong Shi,et al.  NLTE analysis of the solar potassium abundance , 2006 .

[9]  P. Hauschildt,et al.  Influence of NLTE calculations on the hydrogen lines in chromospheric models , 2006 .

[10]  H. W. Zhang,et al.  Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars , 2006 .

[11]  T. Beers,et al.  First stars IX- mixing in extremely metal-poor giants. Variation of the 12C/13C, [Na/Mg] and [Al/Mg] ratios , 2006, astro-ph/0605056.

[12]  L. Mashonkina,et al.  Barium even-to-odd isotope abundance ratios in thick disk and thin disk stars , 2006, astro-ph/0604198.

[13]  S. Ryan,et al.  Neutron-Capture Elements in the Very Metal Poor Star HD 122563 , 2006, astro-ph/0602107.

[14]  T. Beers,et al.  HE 1327–2326, an Unevolved Star with [Fe/H] < –5.0. I. A Comprehensive Abundance Analysis , 2005, astro-ph/0509206.

[15]  Francesca Primas,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 LITHIUM ISOTOPIC ABUNDANCES IN METAL-POOR HALO , 2005 .

[16]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[17]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[18]  T. Beers,et al.  Spectroscopic Studies of Very Metal-poor Stars with the Subaru High Dispersion Spectrograph. III. Light Neutron-Capture Elements , 2005, astro-ph/0503032.

[19]  T. Beers,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[20]  P. Barklem,et al.  The broadening of Fe II lines by neutral hydrogen collisions , 2005, astro-ph/0502098.

[21]  P. H. Hauschildt,et al.  A Non-LTE Line-Blanketed Model of a Solar-Type Star , 2004, astro-ph/0409693.

[22]  J. Lawler,et al.  The Rise of the s-Process in the Galaxy , 2004, astro-ph/0410396.

[23]  K. Butler,et al.  Non-LTE Line Formation for Hydrogen Revisited , 2004, astro-ph/0406458.

[24]  K. Butler,et al.  The Solar Hydrogen Spectrum in Non-Local Thermodynamic Equilibrium , 2004 .

[25]  Beijing,et al.  Sodium abundances in nearby disk stars , 2004, astro-ph/0405535.

[26]  G. Wasserburg,et al.  Abundances In Very Metal-Poor Dwarf Stars , 2004, astro-ph/0405286.

[27]  T. Beers,et al.  HE 0107–5240, a Chemically Ancient Star. I. A Detailed Abundance Analysis , 2003, astro-ph/0311173.

[28]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[29]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[30]  Jian-rong Shi,et al.  Abundances of Na, Mg and Al in nearby metal-poor stars , 2004 .

[31]  B. Freytag,et al.  in Modelling of Stellar Atmospheres , 2004 .

[32]  Frank Grupp,et al.  The nature of the fiber noise with the FOCES spectrograph. Nature, modeling and a way to achieve S/N > 400 , 2003 .

[33]  C. Ledoux,et al.  The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram , 2003 .

[34]  I. Bikmaev,et al.  Observational constraints on potassium synthesis during the formation of stars of the Galactic disk , 2003 .

[35]  C. R. James,et al.  Chemical Substructure in the Milky Way Halo: A New Population of Old Stars , 2003 .

[36]  A. Korn,et al.  Kinetic equilibrium of iron in the atmospheres of cool stars - III. The ionization equilibrium of selected reference stars , 2003, astro-ph/0306337.

[37]  P. Bonifacio,et al.  Oxygen Abundance in the Template Halo Giant HD 122563 , 2003 .

[38]  S. Lucatello,et al.  Abundances for metal-poor stars with accurate parallaxes , I. Basic data , 2003, astro-ph/0303653.

[39]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[40]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[41]  Inga Kamp,et al.  Round Table Summary: Comparison of Different NLTE Codes and the Role of Atomic Input Data , 2003 .

[42]  Michitoshi Yoshida,et al.  High Dispersion Spectrograph (HDS) for the Subaru Telescope , 2002 .

[43]  T. Beers,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[44]  J. Truran,et al.  Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.

[45]  C. Prieto,et al.  The isotopic mixture of barium in the metal‐poor subgiant HD 140283 , 2002, astro-ph/0205376.

[46]  T. Beers,et al.  Stellar Archaeology: A Keck Pilot Program on Extremely Metal-poor Stars from the Hamburg/ESO Survey. II. Abundance Analysis , 2002, astro-ph/0204083.

[47]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[48]  T. Beers,et al.  The Chemical Composition and Age of the Metal-poor Halo Star BD +17°3248 , 2002, astro-ph/0202429.

[49]  Jennifer A. Johnson Abundances of 30 Elements in 23 Metal-Poor Stars , 2001, astro-ph/0111181.

[50]  Gang Zhao,et al.  On the Abundance of Potassium in Metal-Poor Stars , 2001, astro-ph/0110165.

[51]  A. Korn Rectifying Échelle Spectra — A Comparison Between UVES, FEROS and FOCES , 2002 .

[52]  G. Monnet,et al.  Scientific Drivers for ESO Future VLT/VLTI Instrumentation , 2002 .

[53]  J. Lawler,et al.  Improved Laboratory Transition Parameters forEu II and Application to the Solar Europium Elemental and Isotopic Composition , 2001 .

[54]  J. Fulbright Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships , 2001, astro-ph/0110164.

[55]  L. Mashonkina,et al.  Heavy element abundances in cool dwarf stars: An implication for the evolution of the Galaxy ? , 2001 .

[56]  L. Mashonkina,et al.  Revised magnesium abundances in galactic halo and disk stars , 2001 .

[57]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[58]  L. Mashonkina Non-LTE analysis of the formation of EuII lines in the atmospheres of solar-type stars , 2000 .

[59]  Johnson,et al.  Neutron-Capture Element Abundances in the Globular Cluster M15 , 2000, The Astrophysical journal.

[60]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[61]  F. Thévenin,et al.  Non-LTE Abundances and Consequences for the Evolution of the α-Elements in the Galaxy , 2000, astro-ph/0004337.

[62]  D. Alexander,et al.  Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints , 2000 .

[63]  S. Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - I. The effective temperature determination by means of the IRFM , 1999 .

[64]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[65]  F. Thevenin,et al.  Stellar Iron Abundances: Non-LTE Effects , 1999, astro-ph/9906433.

[66]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[67]  T. Beers,et al.  r-Process Abundances and Chronometers in Metal-poor Stars , 1998, The Astrophysical Journal.

[68]  P. Barklem,et al.  The broadening of strong lines of Ca+, Mg+ and Ba+ by collisions with neutral hydrogen atoms , 1998 .

[69]  A. McWilliam Barium Abundances in Extremely Metal-poor Stars , 1998 .

[70]  G. Preston,et al.  The Ultra--Metal-poor, Neutron-Capture--rich Giant Star CS 22892-052 , 1996 .

[71]  S. Arribas,et al.  Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0-K5) , 1996 .

[72]  C. Simon Jeffery,et al.  Newsletter on Analysis of Astronomical Spectra , 1996 .

[73]  S. Anstee,et al.  Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen , 1995 .

[74]  S. Woosley,et al.  Galactic Chemical Evolution: Hydrogen Through Zinc , 1994, astro-ph/9411003.

[75]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[76]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities , 1991 .

[77]  C. Theodosiou,et al.  Accurate calculation of the 4p lifetimes of Ca+ , 1989, Physical review. A, General physics.

[78]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[79]  Ingemar Furenlid,et al.  Solar flux atlas from 296 to 1300 nm , 1985 .

[80]  Joseph Reader,et al.  Wavelengths and transition probabilities for atoms and atomic ions , 1980 .

[81]  P. C. Schmidt,et al.  H. A. Bethe and E. Salpeter: Quantum Mechanics of One‐ and Two‐Electron atoms. Plenum/Rosetta, New York 1977. 370 Seiten, Preis: $ 8.95. , 1978 .

[82]  J. Heasley,et al.  An alternative formulation of the complete linearization method for the solution of non-LTE transfer problems , 1976 .

[83]  J. Cooper,et al.  Hydrogen Stark-Broadening Tables , 1973 .

[84]  L. C. Johnson APPROXIMATIONS FOR COLLISIONAL AND RADIATIVE TRANSITION RATES IN ATOMIC HYDROGEN. , 1972 .

[85]  C. R. Vidal,et al.  Hydrogen Stark broadening calculations with the unified classical path theory. , 1970 .

[86]  H. Drawin Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas , 1968 .

[87]  Wolfgang L. Wiese,et al.  ATOMIC TRANSITION PROBABILITIES. VOLUME 1. HYDROGEN THROUGH NEON , 1966 .

[88]  C. E. Moore A multiplet table of astrophysical interest , 1959 .

[89]  W. Nichols Quantum Mechanics of One- and Two-Electron Atoms . Hans A. Bethe and Edwin E. Salpeter. Springer, Berlin; Academic Press, New York, 1957. viii + 369 pp. Illus. $10. , 1958, Science.

[90]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[91]  C. E. Moore Finding list of all lines in the table of multiplets , 1945 .