Improving Godunov-type reconstructions for simulation of vortex-dominated flows

A systematic Fourier accuracy analysis is performed to examine the numerical diffusion inherent in a Godunov-type reconstruction, including both the reconstruction of the solution within each cell and the computation of the derivative terms of the reconstruction. It is found that compared with the more popular fifth-order polynomial fit of the interface values, a piecewise quadratic reconstruction of the solution with more accurate slope and curvature, especially those computed by compact difference schemes, is much less dissipative. Therefore, further given in the paper is a general framework to make a piecewise quadratic reconstruction free of numerical oscillations around the shocks. The improved accuracy and robustness of the resulting Godunov-type schemes for simulation of vortex-dominated flows are demonstrated with the numerical results of several carefully selected cases, including vortex convection and shock-vortex interaction.

[1]  J. Baeder,et al.  Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulation , 1992 .

[2]  G. Vatistas,et al.  A simpler model for concentrated vortices , 1991 .

[3]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[4]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[5]  L Krist Sherrie,et al.  CFL3D User''s Manual (Version 5.0) , 1998 .

[6]  H. C. Yee,et al.  Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. [in gas dynamics , 1983 .

[7]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[8]  Ramesh K. Agarwal,et al.  Euler calculations for flowfield of a helicopter rotor in hover , 1986 .

[9]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[10]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[11]  W. Mccroskey,et al.  Navier-Stokes calculations of hovering rotor flowfields , 1988 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[13]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[14]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[15]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[16]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[17]  Lakshmi N. Sankar,et al.  Higher Order Numerical Simulation of Rotor Flow Field , 1994 .

[18]  Li Jiang,et al.  Weighted Compact Scheme for Shock Capturing , 2001 .

[19]  V. Gregory Weirs,et al.  Optimization of weighted ENO schemes for DNS of compressible turbulence , 1997 .

[20]  H. Huynh Accurate upwind methods for the Euler equations , 1995 .

[21]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[22]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[23]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[24]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[25]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[26]  Man Mohan Rai,et al.  Navier-Stokes Simulations of Blade-Vortex Interaction Using High-Order-Accurate Upwind Schemes , 1987 .

[27]  S. Osher,et al.  High resolution applications of the Osher upwind scheme for the Euler equations , 1983 .

[28]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[29]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[30]  Brian E. Wake,et al.  Investigation of high-order upwinded differencing for vortex convection , 1995 .

[31]  James D. Baeder,et al.  Evaluation of a Navier-Stokes Analysis Method for Hover Performance Prediction , 1996 .

[32]  Brian E. Thompson,et al.  Accuracy evaluation of unsteady CFD numerical schemes by vortex preservation , 1995 .

[33]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[34]  J. Baeder,et al.  Aerodynamics of two-dimensional blade-vortex interaction , 1985 .

[35]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[36]  B. E. Wake,et al.  Solution of the unsteady Euler equations for fixed and rotor wing configurations , 1985 .

[37]  Lei Tang,et al.  Uniformly Accurate Finite Difference Schemes for p-Refinement , 1998, SIAM J. Sci. Comput..

[38]  B. Wake,et al.  Solutions of the Navier-Stokes Equations for the Flow About a Rotor Blade , 1989 .

[39]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[40]  A. T. Conlisk,et al.  MODERN HELICOPTER AERODYNAMICS , 1997 .