On the Diameter of Random Planar Graphs

We show that the diameter $D(G_n)$ of a random (unembedded) labelled connected planar graph with $n$ vertices is asymptotically almost surely of order $n^{1/4}$, in the sense that there exists a constant $c>0$ such that $P(D(G_n) \in (n^{1/4-\epsilon} ,n^{1/4+\epsilon})) \geq 1-\exp (-n^{c\epsilon})$ for $\epsilon$ small enough and $n$ large enough $(n \geq n_0(\epsilon))$. We prove similar statements for rooted $2$-connected and $3$-connected embedded (maps) and unembedded planar graphs.

[1]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[2]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.

[3]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[4]  Abdelkader Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2006 .

[5]  Marc Noy,et al.  Surveys in Combinatorics 2009: Counting planar graphs and related families of graphs , 2009 .

[6]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[7]  Edward A. Bender,et al.  The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..

[8]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[9]  Jan Ambjorn,et al.  Trees and spatial topology change in CDT , 2013, 1302.1763.

[10]  J. Marckert,et al.  Some families of increasing planar maps , 2007, 0712.0593.

[11]  L. Bruce Richmond,et al.  The Distribution of Heights of Binary Trees and Other Simple Trees , 1993, Combinatorics, Probability and Computing.

[12]  Marc Noy,et al.  The maximum degree of random planar graphs , 2012, SODA.

[13]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[14]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[15]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[16]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[17]  Zhicheng Gao,et al.  A Pattern for the Asymptotic Number of Rooted Maps on Surfaces , 1993, J. Comb. Theory, Ser. A.

[18]  Colva M. Roney-Dougal,et al.  Surveys in combinatorics 2009 , 2009 .

[19]  Konstantinos Panagiotou,et al.  Maximal biconnected subgraphs of random planar graphs , 2009, TALG.

[20]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[21]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[22]  Timothy R. S. Walsh,et al.  Counting labelled three-connected and homeomorphically irreducible two-connected graphs , 1982, J. Comb. Theory, Ser. B.

[23]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[24]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[25]  Marc Noy,et al.  The maximum degree of planar graphs I. Series-parallel graphs , 2010, 1008.5361.

[26]  J. F. Le Gall,et al.  Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .

[27]  Benny Sudakov A Note on Odd Cycle-Complete Graph Ramsey Numbers , 2002, Electron. J. Comb..

[28]  Nicholas C. Wormald,et al.  The Size of the Largest Components in Random Planar Maps , 1999, SIAM J. Discret. Math..

[29]  Jean-Franccois Marckert,et al.  Invariance principles for random bipartite planar maps , 2005, math/0504110.

[30]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[31]  Didier Arquès Une relation fonctionnelle nouvelle sur les cartes planaires pointées , 1985, J. Comb. Theory, Ser. B.

[32]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[33]  Marc Noy,et al.  The Maximum Degree of Series-Parallel Graphs , 2011, Combinatorics, Probability and Computing.

[34]  Grégory Miermont,et al.  An invariance principle for random planar maps , 2006 .

[35]  Edward A. Bender,et al.  The Asymptotic Number of Rooted Maps on a Surface. II. Enumeration by Vertices and Faces , 1993, J. Comb. Theory, Ser. A.

[36]  W. T. Tutte Connectivity in graphs , 1966 .

[37]  J. L. Gall,et al.  The topological structure of scaling limits of large planar maps , 2006, math/0607567.

[38]  G. Miermont,et al.  On the sphericity of scaling limits of random planar quadrangulations , 2007, 0712.3687.