Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery

Microarrays have become a popular and important technology for surveying global patterns in gene expression and regulation. A number of innovative experiments have extended microarray applications beyond the measurement of mRNA expression levels, in order to uncover aspects of large-scale chromosome function and dynamics. This has been made possible due to the recent development of tiling arrays, where all non-repetitive DNA comprising a chromosome or locus is represented at various sequence resolutions. Since tiling arrays are designed to contain the entire DNA sequence without prior consultation of existing gene annotation, they enable the discovery of novel transcribed sequences and regulatory elements through the unbiased interrogation of genomic loci. The implementation of such methods for the global analysis of large eukaryotic genomes presents significant technical challenges. Nonetheless, tiling arrays are expected to become instrumental for the genome-wide identification and characterization of functional elements. Combined with computational methods to relate these data and map the complex interactions of transcriptional regulators, tiling array experiments can provide insight toward a more comprehensive understanding of fundamental molecular and cellular processes.

[1]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[2]  Steven Henikoff,et al.  Chromatin profiling using targeted DNA adenine methyltransferase , 2001, Nature Genetics.

[3]  S. Henikoff,et al.  Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase , 2000, Nature Biotechnology.

[4]  M. Gerstein,et al.  GATA-1 binding sites mapped in the β-globin locus by using mammalian chIp-chip analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Joseph M. Dale,et al.  Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome , 2003, Science.

[6]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[7]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[8]  Pearlly S Yan,et al.  Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase , 2003, Oncogene.

[9]  Mark Gerstein,et al.  Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. , 2002, Genome research.

[10]  C. Bult,et al.  Functional annotation of a full-length mouse cDNA collection , 2001, Nature.

[11]  S. Cawley,et al.  Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding RNAs , 2004, Cell.

[12]  K. Maruyama,et al.  Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. , 1994, Gene.

[13]  Erez Y. Levanon,et al.  Widespread occurrence of antisense transcription in the human genome , 2003, Nature Biotechnology.

[14]  Peggy J. Farnham,et al.  Analysis of Myc Bound Loci Identified by CpG Island Arrays Shows that Max Is Essential for Myc-Dependent Repression , 2003, Current Biology.

[15]  Mark Gerstein,et al.  Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data , 2003, Bioinform..

[16]  Mark M. Davis,et al.  Isolation of cDNA clones encoding T cell-specific membrane-associated proteins , 1984, Nature.

[17]  M. Gerstein,et al.  Genomic analysis of essentiality within protein networks. , 2004, Trends in genetics : TIG.

[18]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[19]  Mark Gerstein,et al.  DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Michael Snyder,et al.  ChIP-chip: a genomic approach for identifying transcription factor binding sites. , 2002, Methods in enzymology.

[21]  T. Volkert,et al.  E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. , 2002, Genes & development.

[22]  J. Mattick Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  E. Schadt,et al.  Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. , 2005, Trends in genetics : TIG.

[24]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[25]  Ding Wang,et al.  Construction and Characterization of a Lipotes vexillifer Genomic DNA BAC Library , 2007, Zoological Science.

[26]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[27]  Thomas E. Royce,et al.  Global Identification of Human Transcribed Sequences with Genome Tiling Arrays , 2004, Science.

[28]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[29]  A. Kerlavage,et al.  Complementary DNA sequencing: expressed sequence tags and human genome project , 1991, Science.

[30]  M Hubank,et al.  Identifying differences in mRNA expression by representational difference analysis of cDNA. , 1994, Nucleic acids research.

[31]  R D Klausner,et al.  The mammalian gene collection. , 1999, Science.

[32]  M. Solomon,et al.  Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Rinn,et al.  The transcriptional activity of human Chromosome 22. , 2003, Genes & development.

[34]  Franco Cerrina,et al.  Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. , 2002, Genome research.

[35]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[36]  M. Gerstein,et al.  Saccharomyces cerevisiae Complex transcriptional circuitry at the G 1 / S transition in data , 2006 .

[37]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[38]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[39]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence Project: update and current status , 2003, Nucleic Acids Res..

[40]  J. Lieb,et al.  Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization. , 2003, Methods in molecular biology.

[41]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[42]  David Botstein,et al.  Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association , 2001, Nature Genetics.

[43]  A. Pardee,et al.  Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. , 1992, Science.

[44]  S. Cawley,et al.  Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. , 2004, Genome research.

[45]  S. P. Fodor,et al.  Large-Scale Transcriptional Activity in Chromosomes 21 and 22 , 2002, Science.

[46]  Michael Q. Zhang,et al.  A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[48]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[49]  Y. Suzuki,et al.  Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. , 1997, Gene.

[50]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[51]  J. Mattick RNA regulation: a new genetics? , 2004, Nature Reviews Genetics.

[52]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[54]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[55]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[56]  Antonio Tugores,et al.  Differential display of eukaryotic mRNA. , 1999, Methods in molecular biology.

[57]  Sandy Shaw,et al.  Evidence of Scale-Free Topology and Dynamics in Gene Regulatory Networks , 2003, IASSE.

[58]  N. Nomura,et al.  Complete sequencing and characterization of 21,243 full-length human cDNAs , 2004, Nature Genetics.

[59]  Nicola J. Rinaldi,et al.  Control of Pancreas and Liver Gene Expression by HNF Transcription Factors , 2004, Science.

[60]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[61]  Mark Gerstein,et al.  Distribution of NF-kappaB-binding sites across human chromosome 22. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[63]  Hongyu Zhao,et al.  Protein–DNA interaction mapping using genomic tiling path microarrays in Drosophila , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[65]  Hongyu Zhao,et al.  An Arabidopsis Promoter Microarray and its Initial Usage in the Identification of HY5 Binding Targets in Vitro , 2004, Plant Molecular Biology.

[66]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[67]  Mark Gerstein,et al.  CREB Binds to Multiple Loci on Human Chromosome 22 , 2004, Molecular and Cellular Biology.

[68]  T. Richmond,et al.  Light-directed 5'-->3' synthesis of complex oligonucleotide microarrays. , 2003, Nucleic acids research.

[69]  Mark Gerstein,et al.  ExpressYourself: a modular platform for processing and visualizing microarray data , 2003, Nucleic Acids Res..

[70]  M. Gerstein,et al.  Genomic analysis of gene expression relationships in transcriptional regulatory networks. , 2003, Trends in genetics : TIG.

[71]  Michael R. Green,et al.  Gene Expression , 1993, Progress in Gene Expression.

[72]  Scott A. Rifkin,et al.  A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster , 2004, Science.