Tuning Anatase-Rutile Phase Transition Temperature: TiO2/SiO2 Nanoparticles Applied in Dye-Sensitized Solar Cells

TiO2/SiO2 nanoparticles with 3, 5, and 10 molar percent of silica, were synthesized by hydrothermal method and characterized by SEM, TEM, N2 adsorption-desorption isotherms, X-ray diffraction, and Raman and UV-Vis spectroscopy. While pristine TiO2 thermally treated at 500°C presents a surface area of 36 m2 g-1 (±10 m2 g-1), TiO2/SiO2 containing 3, 5, and 10 molar percent of silica present surface areas of 93, 124, and 150 m2 g-1 (±10 m2 g-1), respectively. SiO2 is found to form very small amorphous domains well dispersed in the TiO2 matrix. X-ray diffraction and Raman spectroscopy data show that anatase-to-rutile phase transition temperature is delayed by the presence of SiO2, enabling single-anatase phase photoanodes for DSSCs. According to the I×V measurements, photoanodes with 3% of SiO2 result in improved efficiency, which is mainly related to increased surface area and dye loading. In addition, the results suggest a gain in photocurrent related to the passivation of defects by SiO2.

[1]  Kyung-Hee Park,et al.  Using hybrid silica-conjugated TiO2 nanostructures to enhance the efficiency of dye-sensitized solar cells , 2010 .

[2]  Dong Min Kim,et al.  Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation , 2014 .

[3]  R. Prasanth,et al.  A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells , 2016 .

[4]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[5]  T. M. Costa,et al.  Materiais híbridos à base de sílica obtidos pelo método sol-gel , 2009 .

[6]  Javier Soria,et al.  Visible light-activated nanosized doped-TiO2 photocatalysts , 2001 .

[7]  A. Sacco Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells , 2017 .

[8]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[9]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[10]  Jiaguo Yu,et al.  New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. , 2014, Physical chemistry chemical physics : PCCP.

[11]  Md Firoz Pervez,et al.  Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application , 2018 .

[12]  E. Benvenutti,et al.  Influence of ball milling on textural and morphological properties of TiO2 and TiO2/SiO2 xerogel powders applied in photoanodes for solar cells , 2016, Journal of Solid State Electrochemistry.

[13]  A. Lannoy,et al.  Understanding the role of cyclodextrins in the self-assembly, crystallinity, and porosity of titania nanostructures. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[14]  E. Benvenutti,et al.  TiO2 and TiO2/SiO2 nanoparticles obtained by sol–gel method and applied on dye sensitized solar cells , 2014, Journal of Sol-Gel Science and Technology.

[15]  Juan Bisquert,et al.  Assessing Possibilities and Limits for Solar Cells , 2011 .

[16]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[17]  G. Marcì,et al.  Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol , 2002 .

[18]  U. Pal,et al.  Size-Controlled Synthesis of Spherical TiO2 Nanoparticles: Morphology, Crystallization, and Phase Transition , 2007 .

[19]  J. Dupont,et al.  Polymorphic phase study on nitrogen-doped TiO2 nanoparticles: effect on oxygen site occupancy, dye sensitized solar cells efficiency and hydrogen production , 2015 .

[20]  Isabella Concina,et al.  Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes , 2011 .

[21]  M. Grätzel,et al.  Dye-sensitized solar cells: A brief overview , 2011 .

[22]  N. Rahim,et al.  Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review , 2017 .

[23]  Peng Wang,et al.  Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks , 2010 .

[24]  Hankwon Chang,et al.  Effect of SiO2 nanoparticles on the phase transformation of TiO2 in micron-sized porous TiO2-SiO2 mixed particles , 2011 .

[25]  Somenath Roy,et al.  Non-fluorinated synthesis of anatase TiO2 with dominant {001} facets: influence of faceted structures on formaldehyde sensitivity , 2017 .

[26]  D. Aswal,et al.  Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination , 2015 .

[27]  M. Kumar,et al.  Impedance Spectroscopic Investigation of the Degraded Dye-Sensitized Solar Cell due to Ageing , 2016 .

[28]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[29]  J. Banfield,et al.  Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles , 2005 .

[30]  J. Chun,et al.  Investigating the magnitude and source of orientation-dependent interactions between TiO2 crystal surfaces. , 2017, Nanoscale.

[31]  Q. Tang,et al.  Transmission enhanced photoanodes for efficient dye-sensitized solar cells , 2014 .

[32]  I. Tudor,et al.  Preparation of silica doped titania nanoparticles with thermal stability and photocatalytic properties and their application for leather surface functionalization , 2017 .

[33]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[34]  J. Banfield,et al.  The size dependence of the surface free energy of titania nanocrystals. , 2009, Physical chemistry chemical physics : PCCP.

[35]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[36]  Laurence M. Peter,et al.  The Grätzel Cell: Where Next? , 2011 .

[37]  D. Butt,et al.  Effects of intermediate energy heavy‐ion irradiation on the microstructure of rutile TiO2 single crystal , 2018 .

[38]  Q. Tang,et al.  Transmission booster from SiO2 incorporated TiO2 crystallites: Enhanced conversion efficiency in dye-sensitized solar cells , 2014 .

[39]  R. Lerner,et al.  Activation Volumes for Solid-Solid Transformations in Nanocrystals , 2001, Science.

[40]  P. Liska,et al.  Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 , 2008 .