Coexistence of Multiple Attractors and Crisis Route to Chaos in a Novel Chaotic Jerk Circuit

In this paper, a novel autonomous RC chaotic jerk circuit is introduced and the corresponding dynamics is systematically investigated. The circuit consists of opamps, resistors, capacitors and a pair of semiconductor diodes connected in anti-parallel to synthesize the nonlinear component necessary for chaotic oscillations. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a linear transformation of model MO15 previously introduced in [Sprott, 2010]. The structure of the equilibrium points and the discrete symmetries of the model equations are discussed. The bifurcation analysis indicates that chaos arises via the usual paths of period-doubling and symmetry restoring crisis. One of the key contributions of this work is the finding of a region in the parameter space in which the proposed (“elegant”) jerk circuit exhibits the unusual and striking feature of multiple attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). Laboratory experimental results are in good agreement with the theoretical predictions.

[1]  K. Thamilmaran,et al.  An experimental study on SC-CNN based canonical Chua’s circuit , 2013 .

[2]  Julien Clinton Sprott,et al.  Amplitude control approach for chaotic signals , 2013 .

[3]  Daniel J. Gauthier,et al.  Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis. , 1997, Chaos.

[4]  Martin Rosalie,et al.  Systematic template extraction from chaotic attractors: I. Genus-one attractors with an inversion symmetry , 2013 .

[5]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[6]  Mohammad Ghasem Mahjani,et al.  Multiple attractors in Koper–Gaspard model of electrochemical periodic and chaotic oscillations , 2010 .

[7]  Shandelle M Henson,et al.  Multiple mixed-type attractors in a competition model , 2007, Journal of biological dynamics.

[8]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[9]  Julien Clinton Sprott,et al.  A New Chaotic Jerk Circuit , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[11]  S. K. Dana,et al.  Extreme multistability: Attractor manipulation and robustness. , 2015, Chaos.

[12]  Sergey P. Kuznetsov,et al.  Co-existing hidden attractors in a radio-physical oscillator system , 2015 .

[13]  J.-M. Malasoma What is the simplest dissipative chaotic jerk equation which is parity invariant , 2000 .

[14]  Julien Clinton Sprott,et al.  Simple chaotic systems and circuits , 2000 .

[15]  Julien Clinton Sprott,et al.  Precision measurements of a simple chaotic circuit , 2004 .

[16]  Chai Wah Wu,et al.  Chua's oscillator: A compendium of chaotic phenomena , 1994 .

[17]  K. Kyamakya,et al.  On the analysis of semiconductor diode-based chaotic and hyperchaotic generators—a case study , 2014 .

[18]  Jan Danckaert,et al.  Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation , 2013 .

[19]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[20]  Ranjit Kumar Upadhyay,et al.  Multiple attractors and crisis route to chaos in a model food-chain , 2003 .

[21]  Jacques Kengne,et al.  Dynamical analysis of a simple autonomous jerk system with multiple attractors , 2016 .

[22]  Julien Clinton Sprott,et al.  Some simple chaotic jerk functions , 1997 .

[23]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[24]  Vaithianathan Venkatasubramanian,et al.  Coexistence of four different attractors in a fundamental power system model , 1999 .

[25]  Jacques Kengne,et al.  Coexistence of Chaos with Hyperchaos, Period-3 Doubling Bifurcation, and Transient Chaos in the Hyperchaotic Oscillator with Gyrators , 2015, Int. J. Bifurc. Chaos.

[26]  Ralf Eichhorn,et al.  Simple polynomial classes of chaotic jerky dynamics , 2002 .

[27]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[28]  A. G. Rigas,et al.  Time series analysis in chaotic diode resonator circuit , 2006 .

[29]  U. Feudel,et al.  Control of multistability , 2014 .

[30]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[31]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[32]  Julien Clinton Sprott,et al.  Multistability in a Butterfly Flow , 2013, Int. J. Bifurc. Chaos.

[33]  Michael Small,et al.  On a Dynamical System with Multiple Chaotic attractors , 2007, Int. J. Bifurc. Chaos.

[34]  Michael Peter Kennedy,et al.  Nonlinear analysis of the Colpitts oscillator and applications to design , 1999 .

[35]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[36]  Masoller Coexistence of attractors in a laser diode with optical feedback from a large external cavity. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[37]  Samuel Bowong,et al.  Practical finite-time synchronization of jerk systems: Theory and experiment , 2014, Nonlinear Dynamics.

[38]  Martin Rosalie,et al.  Systematic template extraction from chaotic attractors: II. Genus-one attractors with multiple unimodal folding mechanisms , 2015 .

[39]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .