Universality for random matrices and log-gases

Eugene Wigner's revolutionary vision predicted that the energy levels of large complex quantum systems exhibit a universal behavior: the statistics of energy gaps depend only on the basic symmetry type of the model. Simplified models of Wigner's thesis have recently become mathematically accessible. For mean field models represented by large random matrices with independent entries, the celebrated Wigner-Dyson-Gaudin-Mehta (WDGM) conjecture asserts that the local eigenvalue statistics are universal. For invariant matrix models, the eigenvalue distributions are given by a log-gas with potential $V$ and inverse temperature $\beta = 1, 2, 4$. corresponding to the orthogonal, unitary and symplectic ensembles. For $\beta \not \in \{1, 2, 4\}$, there is no natural random matrix ensemble behind this model, but the analogue of the WDGM conjecture asserts that the local statistics are independent of $V$. In these lecture notes we review the recent solution to these conjectures for both invariant and non-invariant ensembles. We will discuss two different notions of universality in the sense of (i) local correlation functions and (ii) gap distributions. We will demonstrate that the local ergodicity of the Dyson Brownian motion is the intrinsic mechanism behind the universality. In particular, we review the solution of Dyson's conjecture on the local relaxation time of the Dyson Brownian motion. Additionally, the gap distribution requires a De Giorgi-Nash-Moser type H\"older regularity analysis for a discrete parabolic equation with random coefficients. Related questions such as the local version of Wigner's semicircle law and delocalization of eigenvectors will also be discussed. We will also explain how these results can be extended beyond the mean field models, especially to random band matrices.

[1]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[2]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[3]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[4]  Luis A. Caffarelli,et al.  Regularity theory for parabolic nonlinear integral operators , 2011 .

[5]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[6]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[7]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[8]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[9]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  S. Nonnenmacher,et al.  Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold , 2006, math-ph/0610019.

[11]  Harold Widom,et al.  On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .

[12]  M. Shcherbina,et al.  Fluctuations of eigenvalues of matrix models and their applications , 2010, 1003.6121.

[13]  Jun Yin,et al.  A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.

[14]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[15]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[16]  Master loop equations, free energy and correlations for the chain of matrices , 2003, hep-th/0309036.

[17]  H. Yau,et al.  The local semicircle law for a general class of random matrices , 2012, 1212.0164.

[18]  Antti Knowles,et al.  Averaging Fluctuations in Resolvents of Random Band Matrices , 2012, 1205.5664.

[19]  P. Gallagher Pair correlation of zeros of the zeta function. , 1985 .

[20]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[21]  H. Yau,et al.  Universality of general $\beta$-ensembles , 2011, 1104.2272.

[22]  Antti Knowles,et al.  Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model , 2010, 1002.1695.

[23]  J. Deuschel,et al.  Large deviations and concentration properties for ∇ϕ interface models , 2000 .

[24]  M. Shcherbina Orthogonal and Symplectic Matrix Models: Universality and Other Properties , 2010, 1004.2765.

[25]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[26]  T. Spencer,et al.  On homogenization and scaling limit of some gradient perturbations of a massless free field , 1997 .

[27]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[28]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[29]  L. Pastur,et al.  Bulk Universality and Related Properties of Hermitian Matrix Models , 2007, 0705.1050.

[30]  L. Erdős Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.

[31]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[32]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[33]  J. Marklof Energy level statistics, lattice point problems, and almost modular functions , 2006 .

[34]  Y. Fyodorov,et al.  Scaling properties of localization in random band matrices: A sigma -model approach. , 1991, Physical review letters.

[35]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[36]  T. Tao The asymptotic distribution of a single eigenvalue gap of a Wigner matrix , 2012, 1203.1605.

[37]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[38]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[39]  E. Lindenstrauss Invariant measures and arithmetic quantum unique ergodicity , 2006 .

[40]  B. Helffer,et al.  On the correlation for Kac-like models in the convex case , 1994 .

[41]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[42]  Jun Yin,et al.  Eigenvector distribution of Wigner matrices , 2011, 1102.0057.

[43]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[44]  Jun Yin,et al.  Edge universality of correlation matrices , 2011, 1112.2381.

[45]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[46]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[47]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[48]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[49]  Universality in Random Matrix Theory for orthogonal and symplectic ensembles , 2004, math-ph/0411075.

[50]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[51]  Terence Tao,et al.  The Wigner-Dyson-Mehta Bulk Universality Conjecture for Wigner Matrices , 2011, 1101.5707.

[52]  J. Ramírez,et al.  Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.

[53]  H. Yau,et al.  Gap Universality of Generalized Wigner and beta-Ensembles , 2012, 1211.3786.

[54]  S. Hikami,et al.  Correlations of nearby levels induced by a random potential , 1996 .

[55]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[56]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[57]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[58]  Bálint Virág,et al.  Continuum limits of random matrices and the Brownian carousel , 2007, 0712.2000.

[59]  Jun Yin,et al.  Delocalization and Diffusion Profile for Random Band Matrices , 2012, 1205.5669.

[60]  M. L. Mehta,et al.  A note on correlations between eigenvalues of a random matrix , 1971 .

[61]  Jeffrey Schenker,et al.  Eigenvector Localization for Random Band Matrices with Power Law Band Width , 2008, 0809.4405.

[62]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[63]  H. Yau,et al.  Universality of local spectral statistics of random matrices , 2011, 1106.4986.

[64]  Horng-Tzer Yau,et al.  Relative entropy and hydrodynamics of Ginzburg-Landau models , 1991 .

[65]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[66]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[67]  Sergio Albeverio,et al.  On the 1/n Expansion for Some Unitary Invariant Ensembles of Random Matrices , 2001 .

[68]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[69]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[70]  H. Yau,et al.  Bulk universality of general β-ensembles with non-convex potential , 2012, 1201.2283.

[71]  T. Ogawa,et al.  Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem , 1991 .

[72]  Peter Sarnak,et al.  The Pair Correlation Function of Fractional Parts of Polynomials , 1998 .

[73]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[74]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[75]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[76]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[77]  S. Olla,et al.  EQUILIBRIUM FLUCTUATIONS FOR ∇ϕ INTERFACE MODEL , 2001 .

[78]  Antti Knowles,et al.  Quantum Diffusion and Delocalization for Band Matrices with General Distribution , 2010, 1005.1838.

[79]  Horng-Tzer Yau,et al.  A comment on the Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices , 2012, 1201.5619.

[80]  Random matrices: Universality of eigenvectors , 2011 .