Design of a hybrid non-volatile SRAM cell for concurrent SEU detection and correction

This paper presents a hybrid non-volatile (NV) SRAM cell with a new scheme for soft error tolerance. The proposed cell consists of a 6T SRAM core, a resistive RAM made of a transistor and a Programmable Metallization Cell. An additional transistor and a transmission gate are utilized for selecting a memory cell in the NVSRAM array. Concurrent error detection (CED) and correction capabilities are provided by connecting the NVSRAM array with a dual-rail checker; CED is accomplished using a dual-rail checker, while correction is accomplished by utilizing the restore operation, such that data from the non-volatile memory element is copied back to the SRAM core. The simulation results show that the proposed scheme is very efficient in terms of numerous figures of merit.

[1]  John P. Hayes,et al.  Modeling and Mitigating Transient Errors in Logic Circuits , 2011, IEEE Transactions on Dependable and Secure Computing.

[2]  Fabrizio Lombardi,et al.  HSPICE macromodel of a Programmable Metallization Cell (PMC) and its application to memory design , 2014, 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[3]  Abbes Tahraoui,et al.  Top-gated silicon nanowire transistors in a single fabrication step. , 2009, ACS nano.

[4]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[5]  John F. Wakerly,et al.  Error detecting codes, self-checking circuits and applications , 1978 .

[6]  Fabrizio Lombardi,et al.  Logic-in-Memory With a Nonvolatile Programmable Metallization Cell , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Yong-Bin Kim,et al.  A 11-Transistor Nanoscale CMOS Memory Cell for Hardening to Soft Errors , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Fabrizio Lombardi,et al.  A hybrid non-volatile SRAM cell with concurrent SEU detection and correction , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[9]  Lloyd W. Massengill,et al.  Basic mechanisms and modeling of single-event upset in digital microelectronics , 2003 .

[10]  T. Calin,et al.  Upset hardened memory design for submicron CMOS technology , 1996 .

[11]  Sylvain Clerc,et al.  Experimental Soft Error Rate of Several Flip-Flop Designs Representative of Production Chip in 32 nm CMOS Technology , 2013, IEEE Transactions on Nuclear Science.

[12]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[13]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[14]  Hideo Ito,et al.  Soft Error Masking Circuit and Latch Using Schmitt Trigger Circuit , 2006, 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[15]  R C Haddon,et al.  Organic Heterostructure Field-�ffect Transistors , 1995, Science.

[16]  Yong-Bin Kim,et al.  Hardening a memory cell for low power operation by gate leakage reduction , 2012, 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).

[17]  D. Rossi,et al.  Latch Susceptibility to Transient Faults and New Hardening Approach , 2007, IEEE Transactions on Computers.

[18]  Ogun Turkyilmaz,et al.  RRAM-based FPGA for “normally off, instantly on” applications , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[19]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[20]  Fabrizio Lombardi,et al.  Design of a Nonvolatile 7T1R SRAM Cell for Instant-on Operation , 2014, IEEE Transactions on Nanotechnology.

[21]  Meng-Fan Chang,et al.  Endurance-aware circuit designs of nonvolatile logic and nonvolatile sram using resistive memory (memristor) device , 2012, 17th Asia and South Pacific Design Automation Conference.

[22]  Meng-Fan Chang,et al.  Low Store Energy, Low VDDmin, 8T2R Nonvolatile Latch and SRAM With Vertical-Stacked Resistive Memory (Memristor) Devices for Low Power Mobile Applications , 2012, IEEE Journal of Solid-State Circuits.

[23]  Giovanni De Micheli,et al.  An Efficient Gate Library for Ambipolar CNTFET Logic , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Lloyd W. Massengill,et al.  Impact of scaling on soft-error rates in commercial microprocessors , 2002 .

[25]  L. Chua Memristor-The missing circuit element , 1971 .

[26]  Qing Dong,et al.  Novel RRAM programming technology for instant-on and high-security FPGAs , 2011, 2011 9th IEEE International Conference on ASIC.

[27]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[28]  Ming-Jinn Tsai,et al.  High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS logic process , 2012, 2012 International Electron Devices Meeting.

[29]  Wei Wei,et al.  Design of a Non-Volatile 7 T 1 R SRAM Cell for Instanton Operation , 2014 .

[30]  Yusuke Shuto,et al.  Nonvolatile SRAM (NV-SRAM) using functional MOSFET merged with resistive switching devices , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[31]  E. Vogel,et al.  Enhanced channel modulation in dual-gated silicon nanowire transistors. , 2005, Nano letters.

[33]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[34]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[35]  Dan Alexandrescu,et al.  Low-Cost Highly-Robust Hardened Cells Using Blocking Feedback Transistors , 2008, 26th IEEE VLSI Test Symposium (vts 2008).

[36]  F. Lombardi,et al.  Design of a Hybrid Memory Cell Using Memristance and Ambipolarity , 2013, IEEE Transactions on Nanotechnology.

[37]  李幼升,et al.  Ph , 1989 .

[38]  Yong-Bin Kim,et al.  Soft-Error Hardening Designs of Nanoscale CMOS Latches , 2009, 2009 27th IEEE VLSI Test Symposium.

[39]  Yusuf Leblebici,et al.  Memristive devices fabricated with silicon nanowire schottky barrier transistors , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[40]  Fabrizio Lombardi,et al.  Designs and analysis of non-volatile memory cells for single event upset (SEU) tolerance , 2014, 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).

[41]  Y. King,et al.  32nm strained nitride MTP cell by fully CMOS logic compatible process , 2012, Proceedings of Technical Program of 2012 VLSI Technology, System and Application.

[42]  藤原 英二,et al.  Code design for dependable systems : theory and practical applications , 2006 .

[43]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[44]  S. Menzel,et al.  Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems , 2007 .

[45]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .