A surrogate modeling method for distributed land surface hydrological models based on deep learning

[1]  S. Liang,et al.  Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data , 2022, Geoscientific Model Development.

[2]  Ruochen Sun,et al.  A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems , 2021, Environ. Model. Softw..

[3]  D. Lucas,et al.  Learning to Correct Climate Projection Biases , 2021, Journal of Advances in Modeling Earth Systems.

[4]  Jianwei Ma,et al.  Deep Learning for Geophysics: Current and Future Trends , 2021, Reviews of Geophysics.

[5]  Jiahu Wang,et al.  Understanding the spatial patterns of evapotranspiration estimates from land surface models over China , 2021 .

[6]  C. Miao,et al.  CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and Climate Studies in China , 2021, Bulletin of the American Meteorological Society.

[7]  Emanuele Borgonovo,et al.  The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support , 2020, Environ. Model. Softw..

[8]  Dapeng Feng,et al.  From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling , 2020, Nature Communications.

[9]  Li Liu,et al.  A surrogate model for the Variable Infiltration Capacity model using deep learning artificial neural network , 2020 .

[10]  John S. Kimball,et al.  Satellite-Based Evapotranspiration in Hydrological Model Calibration , 2020, Remote. Sens..

[11]  Jie He,et al.  The first high-resolution meteorological forcing dataset for land process studies over China , 2020, Scientific Data.

[12]  Qiuhong Tang,et al.  Sensitivity Analysis‐Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China , 2020, Water Resources Research.

[13]  G. Mariéthoz,et al.  Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets , 2020, Water Resources Research.

[14]  S. Hochreiter,et al.  Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets , 2019, Hydrology and Earth System Sciences.

[15]  Chaopeng Shen,et al.  The Value of SMAP for Long-Term Soil Moisture Estimation With the Help of Deep Learning , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[17]  Paris Perdikaris,et al.  Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..

[18]  Dan Lu,et al.  Efficient surrogate modeling methods for large-scale Earth system models based on machine learning techniques , 2019, Geoscientific Model Development.

[19]  Jichun Wu,et al.  Deep Autoregressive Neural Networks for High‐Dimensional Inverse Problems in Groundwater Contaminant Source Identification , 2018, Water Resources Research.

[20]  E. Wood,et al.  In Quest of Calibration Density and Consistency in Hydrologic Modeling: Distributed Parameter Calibration against Streamflow Characteristics , 2018, Water Resources Research.

[21]  Karsten Schulz,et al.  Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks , 2018, Hydrology and Earth System Sciences.

[22]  Kuolin Hsu,et al.  HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community , 2018, Hydrology and Earth System Sciences.

[23]  Y. Hong,et al.  A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model , 2018, Journal of Hydrology.

[24]  Joseph Hamman,et al.  The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility , 2018, Geoscientific Model Development.

[25]  Jichun Wu,et al.  Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media , 2018, Water Resources Research.

[26]  L. Gu,et al.  Calibration of the E3SM Land Model Using Surrogate‐Based Global Optimization , 2018, Journal of Advances in Modeling Earth Systems.

[27]  Ilias Bilionis,et al.  Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification , 2018, J. Comput. Phys..

[28]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[29]  P. Thornton,et al.  The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model , 2017 .

[30]  Chaopeng Shen,et al.  A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists , 2017, Water Resources Research.

[31]  V. Singh,et al.  An Overview of Drought Monitoring and Prediction Systems at Regional and Global Scales , 2017 .

[32]  Wei Gong,et al.  An adaptive surrogate modeling-based sampling strategy for parameter optimization and distribution estimation (ASMO-PODE) , 2017, Environ. Model. Softw..

[33]  Luis Samaniego,et al.  Towards seamless large‐domain parameter estimation for hydrologic models , 2017 .

[34]  S. Stisen,et al.  Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach , 2017 .

[35]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  L. Swiler,et al.  On the applicability of surrogate‐based Markov chain Monte Carlo‐Bayesian inversion to the Community Land Model: Case studies at flux tower sites , 2016 .

[37]  Huiling Yuan,et al.  Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin , 2016 .

[38]  J. Freer,et al.  Improving the theoretical underpinnings of process‐based hydrologic models , 2016 .

[39]  Chen Wang,et al.  Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models , 2016 .

[40]  Sabine Attinger,et al.  Accelerating advances in continental domain hydrologic modeling , 2015 .

[41]  Christine A. Shoemaker,et al.  CH 4 parameter estimation in CLM4.5bgc using surrogate global optimization , 2015 .

[42]  Anthony J. Jakeman,et al.  A review of surrogate models and their application to groundwater modeling , 2015 .

[43]  Simon Stisen,et al.  Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF‐analysis benchmarked by the human perception and evaluated against a modeling case study , 2015 .

[44]  Wei Gong,et al.  An evaluation of adaptive surrogate modeling based optimization with two benchmark problems , 2014, Environ. Model. Softw..

[45]  Wei Gong,et al.  Multi-objective parameter optimization of common land model using adaptive surrogate modeling , 2014 .

[46]  Yan Shen,et al.  A high spatiotemporal gauge‐satellite merged precipitation analysis over China , 2014 .

[47]  Saeid Eslamian,et al.  Hydrologic Prediction and Uncertainty Quantification , 2014, Handbook of Engineering Hydrology (Three-Volume Set).

[48]  Z. Hao,et al.  The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China , 2013 .

[49]  Baoyuan Liu,et al.  Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling , 2013 .

[50]  A. Zhu,et al.  A China data set of soil properties for land surface modeling , 2013 .

[51]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[52]  S. Attinger,et al.  Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale , 2010 .

[53]  Zong-Liang Yang,et al.  Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season , 2010 .

[54]  Hoshin V. Gupta,et al.  On the use of spatial regularization strategies to improve calibration of distributed watershed models , 2010 .

[55]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[56]  Lifeng Luo,et al.  Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System Project , 2004 .

[57]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[58]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[59]  Florian Pappenberger,et al.  Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level , 2016, Environ. Model. Softw..