RF MEMS Actuated Reconfigurable Reflectarray Patch-Slot Element

This paper describes the design of a reconfigurable reflectarray element using commercially available radio frequency micro-electromechanical system (RF MEMS) switches. The element consists of a microstrip patch on the top surface and a slot with an actuated variable length in the ground plane. RF MEMS switches are mounted on the slot to electronically vary the slot length by actuating the switches and thus obtaining the desired phase response. Waveguide measurements and high frequency structure simulator (HFSS) simulations are used to characterize the reflectarray element. The four MEMS switches element gives 10 independent states with a phase swing of 150 deg and a loss variation from 0.4 dB to 1.5 dB at 2 GHz (more switches can provide larger phase shift). The loss is mainly attributed to the dielectric loss and the conductor loss, which occur due to the relatively strong electric fields in the substrate region below the patch and the large currents on the top surface of the patch, respectively, close to the patch resonance. Detailed analysis is performed to characterize the effect of the switches by taking into consideration the switch model and wire bonding effects.

[1]  David M. Pozar,et al.  Analysis and design of a microstrip reflectarray using patches of variable size , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[2]  Dau-Chyrh Chang,et al.  Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization , 1995 .

[3]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[4]  R. Pogorzelski,et al.  A Ka-band microstrip reflectarray with elements having variable rotation angles , 1998 .

[5]  Gregory N. Washington,et al.  Reconfigurable contour beam-reflector antenna synthesis using a mechanical finite-element description of the adjustable surface , 2001 .

[6]  L. Boccia,et al.  Application of varactor diodes for reflectarray phase control , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[7]  J. Shaker,et al.  Reflectarray with slots of varying length on ground plane , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[8]  Y. Rahmat-Samii,et al.  Subreflector shaping for antenna distortion compensation: an efficient Fourier-Jacobi expansion with GO/PO analysis , 2002 .

[9]  F. Tsai,et al.  Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach , 2003 .

[10]  N. Lenin,et al.  Evaluation of the reflected phase of a patch using waveguide simulator for reflectarray design , 2005 .

[11]  P. Pons,et al.  MEMS controlled linearly polarised reflectarray elements , 2006, 2006 12th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference.

[12]  Y. Rahmat-Samii,et al.  Reconfigurable patch antennas for steerable reflectarray applications , 2006, IEEE Transactions on Antennas and Propagation.

[13]  Rolf Jakoby,et al.  Electronically reconfigurable reflectarrays with nematic liquid crystals , 2006 .

[14]  Tayfun Akin,et al.  Reconfigurable reflectarray using RF MEMS technology , 2006, 2006 First European Conference on Antennas and Propagation.

[15]  J.T. Bernhard,et al.  Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[16]  R. J. Davies,et al.  Modeling and Design of Electronically Tunable Reflectarrays , 2007, IEEE Transactions on Antennas and Propagation.

[17]  Y. Rahmat-Samii,et al.  A novel reflector surface distortion compensating technique using a sub-reflectarray , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[18]  Y. Rahmat-Samii,et al.  Dielectric and Conductor Loss Quantification for Microstrip Reflectarray: Simulations and Measurements , 2008, IEEE Transactions on Antennas and Propagation.