Fringing-field effects on high-resolution liquid crystal microdisplays

Fringing-field effects on high-resolution liquid crystal microdisplay devices, including the reflection-type liquid-crystal-on-silicon (LCOS) and transmission-type poly-silicon thin-film-transistor liquid crystal displays are simulated by the beam propagation method. The electro-optic performances of six commonly used liquid crystal modes are analyzed by the two-dimensional optical simulator. The vertically aligned (VA) cell exhibits the highest contrast ratio, but its fringing-field effect is severe. A circularly polarized light illuminated LCOS device is presented to eliminate the fringing-field effect of the VA cell. Both simulated and confirming experimental results show that the long-standing problems of poor sharpness, low brightness, and slow transition time of the VA cell can be overcome by using a circularly polarized light.

[1]  John E. Dean,et al.  Design aspects of a scrolling color LCoS display , 2002 .

[2]  Shin‐Tson Wu,et al.  High-definition vertically aligned liquid crystal microdisplays using a circularly polarized light , 2005 .

[3]  A. Lien,et al.  Extended Jones matrix representation for the twisted nematic liquid‐crystal display at oblique incidence , 1990 .

[4]  Shin-Tson Wu,et al.  Reflective Liquid Crystal Displays , 2001 .

[5]  André Van Calster,et al.  Fringe-field induced disclinations in VAN LCOS panels , 2004 .

[6]  P. Yeh Optics of Liquid Crystal Displays , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[7]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[8]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[9]  Wei-Yang Chou,et al.  A Novel Design to Eliminate Fringe Field Effects for Liquid Crystal on Silicon. , 2002 .

[10]  Shin‐Tson Wu,et al.  Diffraction effect on high-resolution liquid-crystal-on-silicon devices , 2005 .

[11]  H. Vries,et al.  Rotatory Power and Other Optical Properties of Certain Liquid Crystals , 1951 .

[12]  Emmanouil E. Kriezis,et al.  Finite-difference time domain method for light wave propagation within liquid crystal devices , 1999 .

[13]  V. Chigrinov,et al.  5.4: Advanced Tools for Modeling of 2D‐Optics of LCDs , 2005 .

[14]  Shiyong Zhang,et al.  35.2: Direct Observation of Disclination Evolution in Vertically Aligned Liquid Crystal Light Valves , 2000 .

[15]  Jan Grinberg,et al.  A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve , 1975 .

[16]  M. Schiekel,et al.  Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields , 1971 .

[17]  Emmanouil E. Kriezis,et al.  Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method , 2000 .

[18]  G. R. Hadley,et al.  Transparent boundary condition for the beam propagation method , 1992 .

[19]  E E Kriezis,et al.  Wide-angle beam propagation method for liquid-crystal device calculations. , 2000, Applied optics.

[20]  Shin‐Tson Wu,et al.  Mixed‐mode twisted nematic liquid crystal cells for reflective displays , 1996 .

[21]  W. Fichtner,et al.  Rigorous electromagnetic simulation of liquid crystal displays , 1998 .