Influence of head tissue conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver

Accuracy and time play an important role in medical and neuropsychological diagnosis and research. The inverse problem in the field of Electroand MagnetoEncephaloGraphy requires the repeated simulation of the field distribution for a given dipolar source in the human brain using

[1]  Sylvain Baillet,et al.  Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models , 1998, Human brain mapping.

[2]  Gildas Marin Utilisation de la methode des elements finis pour le calcul des champs electromagnetiques a l'aide d'un modele realiste de tete en meg et eeg , 1997 .

[3]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[4]  G. Huiskamp,et al.  The need for correct realistic geometry in the inverse EEG problem , 1999, IEEE Transactions on Biomedical Engineering.

[5]  G. Temple Static and Dynamic Electricity , 1940, Nature.

[6]  C. Wolters Influence of tissue conductivity inhomogeneity and anisotropy on EEG/MEG based source localization in the human brain , 2003 .

[7]  J. D. Munck,et al.  A fast method to compute the potential in the multisphere model (EEG application) , 1993, IEEE Transactions on Biomedical Engineering.

[8]  J W Belliveau,et al.  Conductivity Mapping of Biological Tissue Using Diffusion MRI , 1999, Annals of the New York Academy of Sciences.

[9]  Carsten H. Wolters,et al.  A parallel algebraic multigrid solver for finite element method based source localization in the human brain , 2002 .

[10]  D. B. Heppner,et al.  Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.

[11]  Martin Koch,et al.  Measurement of the self-diffusion tensor of water in the human brain , 2000 .

[12]  Naturwissenschaftlichen Fakultat der Johannes Algebraic Multigrid Methods for Large Scale Finite Element Equations , 2001 .

[13]  Arthur W. Toga,et al.  Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.

[14]  A. Friederici,et al.  Musical syntax is processed in Broca's area: an MEG study , 2001, Nature Neuroscience.

[15]  David R. Wozny,et al.  The electrical conductivity of human cerebrospinal fluid at body temperature , 1997, IEEE Transactions on Biomedical Engineering.

[16]  Gundolf Haase,et al.  Parallel AMG on Distributed MemoryComputers 1 , 2000 .

[17]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[18]  Onno W. Weier,et al.  On the numerical accuracy of the boundary element method (EEG application) , 1989, IEEE Transactions on Biomedical Engineering.

[19]  A. van Oosterom,et al.  Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor , 1992, IEEE Transactions on Biomedical Engineering.

[20]  C. Wagner,et al.  On the Algebraic Construction of Multilevel Transfer Operators , 2000, Computing.

[21]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[22]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[23]  P H Crandall,et al.  The magnetic and electric fields agree with intracranial localizations of somatosensory cortex , 1988, Neurology.

[24]  M Wagner,et al.  Improving source reconstructions by combining bioelectric and biomagnetic data. , 1998, Electroencephalography and clinical neurophysiology.

[25]  M Wagner,et al.  Inverse localization of electric dipole current sources in finite element models of the human head. , 1997, Electroencephalography and clinical neurophysiology.

[26]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[27]  Jens Haueisen,et al.  Dipole models for the EEG and MEG , 2002, IEEE Transactions on Biomedical Engineering.

[28]  S. Reitzinger,et al.  A General Approach to Algebraic Multigrid Methods , 2000 .

[29]  Klaus Stüben,et al.  Parallel algebraic multigrid based on subdomain blocking , 2001, Parallel Comput..

[30]  Carsten H. Wolters,et al.  Efficient algorithms for the regularization of dynamic inverse problems: II. Applications , 2002 .

[31]  D. Wilton,et al.  Computational aspects of finite element modeling in EEG source localization , 1997, IEEE Transactions on Biomedical Engineering.

[32]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[33]  A K Louis,et al.  Efficient algorithms for the regularization of dynamic inverse problems: I. Theory , 2002 .

[34]  J Haueisen,et al.  The influence of local tissue conductivity changes on the magnetoencephalogram and the electroencephalogram. , 2000, Biomedizinische Technik. Biomedical engineering.

[35]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[36]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[37]  W Vennart,et al.  Magnetism in Medicine: A Handbook , 1999 .

[38]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[39]  J. Haueisen,et al.  The Influence of Brain Tissue Anisotropy on Human EEG and MEG , 2002, NeuroImage.

[40]  M. Hämäläinen,et al.  Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. , 1987, Physics in medicine and biology.

[41]  Pranay Chaudhuri,et al.  An $O(n^2)$ Self-Stabilizing Algorithm for Computing Bridge-Connected Components , 1999, Computing.

[42]  Ulrich Rüde,et al.  Multilevel Methods for Inverse Bioelectric Field Problems , 2002 .

[43]  Yongmin Kim,et al.  An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy , 2001, IEEE Transactions on Biomedical Engineering.

[44]  K. Svoboda,et al.  Time-dependent diffusion of water in a biological model system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. G. Norris,et al.  Coherence and Interference in Ultrafast RARE Experiments , 1993 .

[46]  R. Hummel,et al.  The wrapper algorithm: surface extraction and simplification , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[47]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[48]  H. Spekreijse,et al.  Mathematical dipoles are adequate to describe realistic generators of human brain activity , 1988, IEEE Transactions on Biomedical Engineering.

[49]  Ferdinand Kickinger,et al.  Algebraic Multi-grid for Discrete Elliptic Second-Order Problems , 1998 .

[50]  Ulrich Hartmann,et al.  Improved tissue modeling and fast solver methods for high resolution FE-modeling in EEG/MEG-source localization , 2000 .

[51]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[52]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[53]  P. Nicholson,et al.  Specific impedance of cerebral white matter. , 1965, Experimental neurology.