Framed Hilbert space: hanging the quasi-probability pictures of quantum theory

Building on earlier work, we further develop a formalism based on the mathematical theory of frames that defines a set of possible phase-space or quasi-probability representations of finite-dimensional quantum systems. We prove that an alternate approach to defining a set of quasi-probability representations, based on a more natural generalization of a classical representation, is equivalent to our earlier approach based on frames, and therefore is also subject to our no-go theorem for a non-negative representation. Furthermore, we clarify the relationship between the contextuality of quantum theory and the necessity of negativity in quasi-probability representations and discuss their relevance as criteria for non-classicality. We also provide a comprehensive overview of known quasi-probability representations and their expression within the frame formalism.

[1]  Timothy F. Havel The Real Density Matrix , 2002, Quantum Inf. Process..

[2]  J. Lavoie,et al.  Quantum-inspired interferometry with chirped laser pulses , 2008, 0804.4022.

[3]  Joseph M. Renes,et al.  Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements , 2004 .

[4]  P. Busch Quantum states and generalized observables: a simple proof of Gleason's theorem. , 1999, Physical review letters.

[5]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[6]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[7]  Christopher Isham,et al.  Lectures On Quantum Theory: Mathematical And Structural Foundations , 1995 .

[8]  P. Bertrand,et al.  A tomographic approach to Wigner's function , 1987 .

[9]  P. Busch,et al.  On classical representations of finite-dimensional quantum mechanics , 1993 .

[10]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[11]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[12]  R. Schack,et al.  Classical model for bulk-ensemble NMR quantum computation , 1999, quant-ph/9903101.

[13]  R. Spekkens Contextuality for preparations, transformations, and unsharp measurements , 2004, quant-ph/0406166.

[14]  J. Paz,et al.  Phase-space approach to the study of decoherence in quantum walks , 2003 .

[15]  Christopher A. Fuchs,et al.  Physical Significance of Symmetric Informationally-Complete Sets of Quantum States , 2007 .

[16]  Hai-Woong Lee,et al.  Theory and application of the quantum phase-space distribution functions , 1995 .

[17]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[18]  Extended Cahill-Glauber formalism for finite-dimensional spaces: I. Fundamentals , 2005, quant-ph/0503054.

[19]  Daniel Gottesman,et al.  Classicality in discrete Wigner functions , 2005, quant-ph/0506222.

[20]  E. Galvão Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.

[21]  Nicholas Harrigan,et al.  Ontological models and the interpretation of contextuality , 2007, 0709.4266.

[22]  M. A. Marchiolli,et al.  Quasiprobability distribution functions for periodic phase-spaces: I. Theoretical Aspects , 2006, quant-ph/0602216.

[23]  P. Combe,et al.  A stochastic treatment of the dynamics of an integer spin , 1988 .

[24]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[25]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[26]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[27]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[28]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Leonhardt Quantum-state tomography and discrete Wigner function. , 1995, Physical review letters.

[30]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[31]  李幼升,et al.  Ph , 1989 .

[32]  Lucien Hardy,et al.  Quantum ontological excess baggage , 2004 .

[33]  J. Marsden,et al.  Lectures on analysis , 1969 .

[34]  William K. Wootters Picturing qubits in phase space , 2004, IBM J. Res. Dev..

[35]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[36]  J. Paz Discrete Wigner functions and the phase-space representation of quantum teleportation , 2002, quant-ph/0204150.

[37]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[38]  G. A. Baker,et al.  Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space , 1958 .

[39]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[40]  Quantum computers in phase space , 2002, quant-ph/0204149.

[41]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[42]  Leonhardt Discrete Wigner function and quantum-state tomography. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  Discrete Moyal-type representations for a spin , 2000, quant-ph/0004022.

[44]  S. Chaturvedi,et al.  Wigner-Weyl correspondence in quantum mechanics for continuous and discrete systems-a Dirac-inspired view , 2006 .