Fourier Analysis for Multigrid Methods on Triangular Grids

In this paper a local Fourier analysis technique for multigrid methods on triangular grids is presented. The analysis is based on an expression of the Fourier transform in new coordinate systems, both in space variables and in frequency variables, associated with reciprocal bases. This tool makes it possible to study different components of the multigrid method in a very similar way to that of rectangular grids. Different smoothers for the discrete Laplace operator obtained with linear finite elements are analyzed. A new three-color smoother has been studied and has proven to be the best choice for “near” equilateral triangles. It is also shown that the block-line smoothers are more appropriate for irregular triangles. Numerical test calculations validate the theoretical predictions.

[1]  Stefan Vandewalle,et al.  Local Fourier Analysis of Multigrid for the Curl-Curl Equation , 2008, SIAM J. Sci. Comput..

[2]  Irad Yavneh,et al.  Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied to a class of elliptic operators , 1995 .

[3]  Cornelis W. Oosterlee,et al.  An Efficient Multigrid Solver based on Distributive Smoothing for Poroelasticity Equations , 2004, Computing.

[4]  C.-C. Jay Kuo,et al.  Two-color fourier analysis of the multigrid method with red-black Gauss-Seidel smoothing , 1989 .

[5]  Pieter W. Hemker,et al.  Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..

[6]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[7]  S. Sivaloganathan,et al.  The use of local mode analysis in the design and comparison of multigrid methods , 1991 .

[8]  Cornelis W. Oosterlee,et al.  A Genetic Search for Optimal Multigrid Components Within a Fourier Analysis Setting , 2002, SIAM J. Sci. Comput..

[9]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[10]  A. Niestegge,et al.  Analysis of a multigrid strokes solver , 1990 .

[11]  Irad Yavneh,et al.  On Red-Black SOR Smoothing in Multigrid , 1996, SIAM J. Sci. Comput..

[12]  A. Brandt Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2 -norm , 1994 .

[13]  Cornelis W. Oosterlee,et al.  FOURIER ANALYSIS OF GMRES ( m ) PRECONDITIONED BY MULTIGRID , 2000 .

[14]  BORIS DISKIN,et al.  On Quantitative Analysis Methods for Multigrid Solutions , 2005, SIAM J. Sci. Comput..

[15]  Edward J. Coyle,et al.  A semi‐algebraic approach that enables the design of inter‐grid operators to optimize multigrid convergence , 2008, Numer. Linear Algebra Appl..

[16]  Ulrich Rüde,et al.  A Massively Parallel Multigrid Method for Finite Elements , 2006, Computing in Science & Engineering.

[17]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[18]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[19]  G. Wittum Multi-grid methods for stokes and navier-stokes equations , 1989 .

[20]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[21]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[22]  Cornelis W. Oosterlee,et al.  Multigrid Line Smoothers for Higher Order Upwind Discretizations of Convection-Dominated Problems , 1998 .

[23]  Cornelis W. Oosterlee,et al.  On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..