Microplasmas for chemical analysis: analytical tools or research toys?

Abstract An overview of the activities of the research groups that have been involved in fabrication, development and characterization of microplasmas for chemical analysis over the last few years is presented. Microplasmas covered include: miniature inductively coupled plasmas (ICPs); capacitively coupled plasmas (CCPs); microwave-induced plasmas (MIPs); a dielectric barrier discharge (DBD); microhollow cathode discharge (MCHD) or microstructure electrode (MSE) discharges, other microglow discharges (such as those formed between “liquid” electrodes); microplasmas formed in micrometer-diameter capillary tubes for gas chromatography (GC) or high-performance liquid chromatography (HPLC) applications, and a stabilized capacitive plasma (SCP) for GC applications. Sample introduction into microplasmas, in particular, into a microplasma device (MPD), battery operation of a MPD and of a mini- in-torch vaporization (ITV) microsample introduction system for MPDs, and questions of microplasma portability for use on site (e.g., in the field) are also briefly addressed using examples of current research. To emphasize the significance of sample introduction into microplasmas, some previously unpublished results from the author's laboratory have also been included. And an overall assessment of the state-of-the-art of analytical microplasma research is provided.

[1]  Jeffrey Hopwood,et al.  Langmuir probe diagnostics of a microfabricated inductively coupled plasma on a chip , 2003 .

[2]  J. Hopwood,et al.  Emission spectroscopy using a microfabricated inductively coupled plasma-on-a-chip , 2002 .

[3]  K. Niemax,et al.  The dielectric barrier discharge — a powerful microchip plasma for diode laser spectrometry , 2001 .

[4]  D. Graves,et al.  Microhollow cathode discharge stability with flow and reaction , 2003 .

[5]  V. Karanassios,et al.  Elemental analysis of micro-samples of liquids or slurries by coiled-filament in-torch vaporization-inductively coupled plasma atomic emission spectrometry (ITV-ICP-AES) , 1999 .

[6]  P. Mezei,et al.  Development of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water , 2000 .

[7]  J. Hopwood,et al.  Influence of operating frequency and coupling coefficient on the efficiency of microfabricated inductively coupled plasma sources , 2002 .

[8]  J. Broekaert,et al.  The development of microplasmas for spectrochemical analysis , 2002, Analytical and bioanalytical chemistry.

[9]  K. Niemax,et al.  Diode laser-aided diagnostics of a low-pressure dielectric barrier discharge applied in element-selective detection of molecular species , 2002 .

[10]  T. Greibrokk,et al.  Microplasma mass spectrometric detection in capillary gas chromatography. , 1998, Analytical chemistry.

[11]  Kay Niemax,et al.  Microplasmas for analytical spectrometry , 2003 .

[12]  T. Greibrokk,et al.  Capillary Gas Chromatography Coupled with Microplasma Mass Spectrometry – Improved Ion Source Design Compatible with Bench‐Top Mass Spectrometric Instrumentation , 1998 .

[13]  V. Karanassios,et al.  Rhenium-cup, in-torch vaporization (ITV) sample introduction for axially viewed ICP-AES and its application to the analysis of a microscopic, ng-weight solid sample , 2002 .

[14]  K. Frank,et al.  Excimer emission from microhollow cathode argon discharges , 2003 .

[15]  E. Voges,et al.  A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique. , 2000, Analytical chemistry.

[16]  Shuo Chen,et al.  Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector , 2002 .

[17]  Vassili Karanassios,et al.  Microfluidics in environmental monitoring: liquid microsamples by an in-torch vaporization: microplasma device (ITV-MPD) , 2001, SPIE Optics East.

[18]  V. Karanassios,et al.  Calcium content of individual, microscopic, (sub) nanoliter volume Paramecium sp. cells using rhenium-cup in-torch vaporization (ITV) sample introduction and axially viewed ICP-AES , 2002 .

[19]  Jeffrey Hopwood,et al.  Microfabricated inductively coupled plasma-on-a-chip for molecular SO2 detection: a comparison between global model and optical emission spectrometry , 2003 .

[20]  M. Blades,et al.  A capacitively coupled microplasma (CCµP) formed in a channel in a quartz wafer , 2001 .

[21]  Konstantinos P. Giapis,et al.  High-pressure micro-discharges in etching and deposition applications , 2003 .

[22]  E. Voges,et al.  An improved microstrip plasma for optical emission spectrometry of gaseous species , 2003 .

[23]  P. Mezei,et al.  Subnanogram sensitive multimetal detector with atmospheric electrolyte cathode glow discharge , 2003 .

[24]  T. Greibrokk,et al.  Capillary gas chromatography coupled with negative ionization microplasma mass spectrometry for halogen-selective detection , 2000 .

[25]  M. Otto,et al.  Hyphenation of a near-infrared Echelle spectrometer to a microplasma for element-selective detection in gas chromatography , 2001, Fresenius' journal of analytical chemistry.

[26]  R. K. Marcus,et al.  Role of powering geometries and sheath gas composition on operation characteristics and the optical emission in the liquid sampling-atmospheric pressure glow discharge , 2002 .

[27]  Franklin Chau-Nan Hong,et al.  Radio-frequency microdischarge arrays for large-area cold atmospheric plasma generation , 2003 .

[28]  Jan C.T. Eijkel,et al.  A molecular emission detector on a chip employing a direct current microplasma , 1999 .

[29]  J. Hopwood,et al.  A microfabricated inductively coupled plasma generator , 2000, Journal of Microelectromechanical Systems.

[30]  Y. Gianchandani,et al.  Spectral detection of metal contaminants in water using an on-chip microglow discharge , 2002 .

[31]  Y. Yin,et al.  Fabrication and characterization of a micromachined 5 mm inductively coupled plasma generator , 2000 .

[32]  T. Greibrokk,et al.  Simultaneous Element-Selective Detection of C, F, Cl, Br, and I by Capillary Gas Chromatography Coupled with Microplasma Mass Spectrometry , 1998 .

[33]  Y. Yin,et al.  Miniaturization of inductively coupled plasma sources , 1999 .

[34]  K. Niemax,et al.  Plasmas for lab-on-the-chip applications , 2002 .

[35]  Y. Horiike,et al.  An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample , 2003 .

[36]  D. Beauchemin Discrete Sample Introduction Techniques for Inductively Coupled Plasma Mass Spectrometry , 2000 .

[37]  A. Manz,et al.  TECHNICAL NOTE: A miniaturized glow discharge applied for optical emission detection in aqueous analytes , 2002 .

[38]  Y. Horiike,et al.  Capacitively Coupled Microplasma Source on a Chip at Atmospheric Pressure , 2001 .

[39]  C. Penache,et al.  Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy , 2002 .

[40]  T. Greibrokk,et al.  Capillary gas chromatography coupled with microplasma mass spectrometry for organotin speciation. , 1999, Journal of Chromatography A.

[41]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[42]  Jan C.T. Eijkel,et al.  An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector , 2000 .

[43]  Eijkel,et al.  A dc microplasma on a chip employed as an optical emission detector for gas chromatography , 2000, Analytical chemistry.

[44]  J. Olesik Investigating the Fate of Individual Sample Droplets in Inductively Coupled Plasmas , 1997 .

[45]  Clark J. Wagner,et al.  Microdischarge arrays: a new family of photonic devices (revised*) , 2002 .

[46]  Tyge Greibrokk,et al.  On-column bromine- and chlorine-selected detection for capillary gas chromatography using a radio frequency plasma , 1993 .

[47]  P. Hauser,et al.  A capacitively coupled microplasma in a fused silica capillary , 2003 .

[48]  R. Barnes,et al.  Microwave-excited atmospheric pressure helium plasma emission detection characteristics in fused silica capillary gas chromatography , 1981 .

[49]  P. Mezei,et al.  Emission studies on a glow discharge in atmospheric pressure air using water as a cathode , 1993 .

[50]  R. K. Marcus,et al.  An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media , 2001 .

[51]  E. Voges,et al.  A low-power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology , 2000 .

[52]  E. Voges,et al.  A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry , 2000 .

[53]  James J. Sullivan,et al.  Evaluation of a microwave cavity, discharge tube, and gas flow system for combined gas chromatography-atomic emission detection , 1990 .

[54]  J. Hopwood,et al.  Low-power microwave plasma source based on a microstrip split-ring resonator , 2003 .

[55]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[56]  Ken Okazaki,et al.  Ultrashort pulsed barrier discharges and applications , 2002 .

[57]  Jack Chen,et al.  Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: Arrays, emitters and photodetectors , 2003 .

[58]  Jan C.T. Eijkel,et al.  Towards an on-chip gas chromatograph: the development of a gas injector and a dc plasma emission detector , 2002 .

[59]  S. Büttgenbach,et al.  Micro-structured electrode arrays: atmospheric pressure plasma processes and applications , 2003 .

[60]  K. Niemax,et al.  The dielectric barrier discharge as a detector for gas chromatography , 2003 .