Interactive Visualization of 2-D Persistence Modules

The goal of this work is to extend the standard persistent homology pipeline for exploratory data analysis to the 2-D persistence setting, in a practical, computationally efficient way. To this end, we introduce RIVET, a software tool for the visualization of 2-D persistence modules, and present mathematical foundations for this tool. RIVET provides an interactive visualization of the barcodes of 1-D affine slices of a 2-D persistence module $M$. It also computes and visualizes the dimension of each vector space in $M$ and the bigraded Betti numbers of $M$. At the heart of our computational approach is a novel data structure based on planar line arrangements, on which we can perform fast queries to find the barcode of any slice of $M$. We present an efficient algorithm for constructing this data structure and establish bounds on its complexity.

[1]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[2]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[3]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[4]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[5]  F. Mémoli,et al.  Multiparameter Hierarchical Clustering Methods , 2010 .

[6]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[7]  Afra Zomorodian,et al.  Computing Multidimensional Persistence , 2009, J. Comput. Geom..

[8]  D. Eisenbud The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry , 2004 .

[9]  Cary Webb Decomposition of graded modules , 1985 .

[10]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[11]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[12]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[13]  Roberto La Scala,et al.  Strategies for Computing Minimal Free Resolutions , 1998, J. Symb. Comput..

[14]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[15]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[16]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[17]  A. J.,et al.  Analysis of Christofides ' heuristic : Some paths are more difficult than cycles , 2002 .

[18]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[19]  Ulrich Bauer,et al.  Phat - Persistent Homology Algorithms Toolbox , 2014, J. Symb. Comput..

[20]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[21]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[22]  Gunnar E. Carlsson,et al.  Topological pattern recognition for point cloud data* , 2014, Acta Numerica.

[24]  Grzegorz Jablonski,et al.  Comparing shapes through multi-scale approximations of the matching distance , 2014, Comput. Vis. Image Underst..

[25]  Claus Weihs,et al.  Classification as a Tool for Research , 2010 .

[26]  Daniela Giorgi,et al.  A new algorithm for computing the 2-dimensional matching distance between size functions , 2011, Pattern Recognit. Lett..

[27]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[28]  Chao Chen,et al.  Persistent Homology Computation with a Twist , 2011 .

[29]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  R. Tennant Algebra , 1941, Nature.

[31]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[32]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[33]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[34]  Claudia Landi,et al.  The rank invariant stability via interleavings , 2014, ArXiv.

[35]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[36]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[37]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[38]  Mikhail J. Atallah,et al.  Algorithms and Theory of Computation Handbook , 2009, Chapman & Hall/CRC Applied Algorithms and Data Structures series.

[39]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[40]  Michael Atiyah,et al.  On the Krull-Schmidt theorem with application to sheaves , 1956 .

[41]  Ulrich Bauer,et al.  Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.

[42]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[43]  Ulrich Bauer,et al.  Induced Matchings of Barcodes and the Algebraic Stability of Persistence , 2013, SoCG.

[44]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  J. Curry Sheaves, Cosheaves and Applications , 2013, 1303.3255.

[47]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.