Interval Analysis and Calculus for Interval-Valued Functions of a Single Variable. Part I: Partial Orders, gH-Derivative, Monotonicity

We present new results in interval analysis (IA) and in the calculus for interval-valued functions of a single real variable. Starting with a recently proposed comparison index, we develop a new general setting for partial order in the (semi linear) space of compact real intervals and we apply corresponding concepts for the analysis and calculus of interval-valued functions. We adopt extensively the midpoint-radius representation of intervals in the real half-plane and show its usefulness in calculus. Concepts related to convergence and limits, continuity, gH-differentiability and monotonicity of interval-valued functions are introduced and analyzed in detail. Graphical examples and pictures accompany the presentation. A companion Part II of the paper will present additional properties (max and min points, convexity and periodicity).

[1]  Tong Shaocheng,et al.  Interval number and fuzzy number linear programmings , 1994 .

[2]  Luciano Stefanini,et al.  Some notes on generalized Hukuhara differentiability of interval-valued functions and interval differential equations , 2012 .

[3]  Barnabás Bede,et al.  Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations , 2005, Fuzzy Sets Syst..

[4]  A. Mostafaee,et al.  Inverse linear programming with interval coefficients , 2016, J. Comput. Appl. Math..

[5]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[6]  S. Markov On the Algebra of Intervals ∗ , 2016 .

[7]  H. Zimmermann,et al.  Duality in Fuzzy Linear Programming , 1980 .

[8]  Luciano Stefanini,et al.  A comparison index for interval ordering based on generalized Hukuhara difference , 2012, Soft Computing.

[9]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[10]  H. Banks,et al.  A Differential Calculus for Multifunctions , 1970 .

[11]  Svetoslav Markov,et al.  Calculus for interval functions of a real variable , 1979, Computing.

[12]  Tapan Kumar Pal,et al.  Fuzzy Preference Ordering of Interval Numbers in Decision Problems , 2009, Studies in Fuzziness and Soft Computing.

[13]  M. Inuiguchi,et al.  Goal programming problems with interval coefficients and target intervals , 1991 .

[14]  G. Alefeld,et al.  Interval analysis: theory and applications , 2000 .

[15]  Yurilev Chalco-Cano,et al.  Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative , 2013, Fuzzy Optim. Decis. Mak..

[16]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[17]  Luciano Stefanini,et al.  Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability , 2019, Fuzzy Sets Syst..

[18]  Hsien-Chung Wu,et al.  The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions , 2009, Fuzzy Optim. Decis. Mak..

[19]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function , 2007, Eur. J. Oper. Res..

[20]  Barnabás Bede,et al.  Generalized differentiability of fuzzy-valued functions , 2013, Fuzzy Sets Syst..

[21]  J. Verdegay A dual approach to solve the fuzzy linear programming problem , 1984 .

[22]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[23]  Yurilev Chalco-Cano,et al.  A note on generalized convexity for fuzzy mappings through a linear ordering , 2013, Fuzzy Sets Syst..

[24]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[25]  Luciano Stefanini,et al.  A new approach to linear programming with interval costs , 2017, 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[26]  G. Jahanshahloo Data Envelopment Analysis with Imprecise Data , 2011 .

[28]  Mehdi Allahdadi,et al.  Improving the modified interval linear programming method by new techniques , 2016, Inf. Sci..

[29]  Xiaojun Zeng,et al.  An ensemble framework for assessing solutions of interval programming problems , 2018, Inf. Sci..

[30]  Yurilev Chalco-Cano,et al.  Optimality conditions for generalized differentiable interval-valued functions , 2015, Inf. Sci..

[31]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions , 2009, Eur. J. Oper. Res..

[32]  Barnabás Bede,et al.  A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets , 2019, Axioms.

[33]  Yurilev Chalco-Cano,et al.  Necessary and sufficient conditions for fuzzy optimality problems , 2016, Fuzzy Sets Syst..

[34]  Luciano Stefanini,et al.  A comparison index for interval ordering , 2011, 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[35]  Vladimir Rovenski Modeling of Curves and Surfaces with MATLAB , 2010 .

[36]  Weldon A. Lodwick,et al.  Fuzzy Optimization , 2009, Encyclopedia of Complexity and Systems Science.

[37]  Yurilev Chalco-Cano,et al.  The Karush–Kuhn–Tucker optimality conditions for fuzzy optimization problems , 2015, Fuzzy Optimization and Decision Making.

[38]  Ibraheem Alolyan,et al.  Algorithm for interval linear programming involving interval constraints , 2013, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).

[39]  Imre J. Rudas,et al.  First order linear fuzzy differential equations under generalized differentiability , 2007, Inf. Sci..

[40]  Luciano Stefanini,et al.  A generalization of Hukuhara difference and division for interval and fuzzy arithmetic , 2010, Fuzzy Sets Syst..

[41]  Uwe Fink,et al.  Fuzzy Sets Decision Making And Expert Systems , 2016 .

[42]  Luciano Stefanini On the generalized LU-fuzzy derivative and fuzzy differential equations , 2007, 2007 IEEE International Fuzzy Systems Conference.

[43]  José L. Verdegay,et al.  Progress on Fuzzy Mathematical Programming: A personal perspective , 2015, Fuzzy Sets Syst..

[44]  Yurilev Chalco-Cano,et al.  Calculus for interval-valued functions using generalized Hukuhara derivative and applications , 2013, Fuzzy Sets Syst..

[45]  M. Hukuhara INTEGRATION DES APPLICAITONS MESURABLES DONT LA VALEUR EST UN COMPACT CONVEXE , 1967 .

[46]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[47]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[48]  Hideo Tanaka,et al.  On Fuzzy-Mathematical Programming , 1973 .

[49]  Luciano Stefanini,et al.  A Generalization of Hukuhara Difference , 2008, SMPS.

[50]  Y Chalco Cano,et al.  GENERALIZED DERIVATIVE AND -DERIVATIVE FOR SET-VALUED FUNCTIONS , 2011 .

[51]  Siegfried Gottwald,et al.  Applications of fuzzy sets to systems analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[52]  Barnabás Bede,et al.  Generalized fuzzy differentiability with LU-parametric representation , 2014, Fuzzy Sets Syst..

[53]  M. Puri,et al.  DIFFERENTIAL FOR FUZZY FUNCTION , 1983 .

[54]  Barnabás Bede,et al.  Mathematics of Fuzzy Sets and Fuzzy Logic , 2012, Studies in Fuzziness and Soft Computing.

[55]  José L. Verdegay,et al.  Fuzzy Sets in Decision Analysis, Operations Research and Statistics , 2001 .

[56]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[57]  Milan Vlach,et al.  Satisficing solutions and duality in interval and fuzzy linear programming , 2003, Fuzzy Sets Syst..

[58]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[59]  Christian Bär Elementary Differential Geometry , 2010 .

[60]  Yurilev Chalco-Cano,et al.  Algebra of generalized Hukuhara differentiable interval-valued functions: review and new properties , 2019, Fuzzy Sets Syst..

[62]  Hsien-Chung Wu,et al.  Duality Theory in Interval-Valued Linear Programming Problems , 2011, J. Optim. Theory Appl..

[63]  Alfred Gray,et al.  Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .