Stochastically ordered multiple regression.

In various application areas, prior information is available about the direction of the effects of multiple predictors on the conditional response distribution. For example, in epidemiology studies of potentially adverse exposures and continuous health responses, one can typically assume a priori that increasing the level of an exposure does not lead to an improvement in the health response. Such an assumption can be formalized through a stochastic ordering assumption in each of the exposures, leading to a potentially large improvement in efficiency in nonparametric modeling of the conditional response distribution. This article proposes a Bayesian nonparametric approach to this problem based on characterizing the conditional response density as a Gaussian mixture, with the locations of the Gaussian means varying flexibly with predictors subject to minimal constraints to ensure stochastic ordering. Theoretical properties are considered and Markov chain Monte Carlo methods are developed for posterior computation. The methods are illustrated using simulation examples and a reproductive epidemiology application.

[1]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[2]  Peter Bacchetti,et al.  Additive Isotonic Models , 1989 .

[3]  S. Walker,et al.  A Bayesian approach to non‐parametric monotone function estimation , 2009 .

[4]  Andrea Ongaro,et al.  Discrete random probability measures: a general framework for nonparametric Bayesian inference☆ , 2004 .

[5]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[6]  S. Kotz,et al.  The Standard Two-Sided Power Distribution and its Properties , 2002 .

[7]  P. Müller,et al.  Bayesian curve fitting using multivariate normal mixtures , 1996 .

[8]  Katja Ickstadt,et al.  Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis , 2009, Biometrics.

[9]  Alan E. Gelfand,et al.  Nonparametric Bayesian Modeling for Stochastic Order , 2001 .

[10]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[11]  Audris Mockus,et al.  A nonparametric Bayes method for isotonic regression , 1995 .

[12]  G. Roberts,et al.  Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models , 2007, 0710.4228.

[13]  L. Shapley,et al.  Statistics, probability, and game theory : papers in honor of David Blackwell , 1999 .

[14]  Matthew P Longnecker,et al.  Maternal Levels of Polychlorinated Biphenyls in Relation to Preterm and Small-for-Gestational-Age Birth , 2005, Epidemiology.

[15]  S. MacEachern,et al.  An ANOVA Model for Dependent Random Measures , 2004 .

[16]  G. Tutz,et al.  Generalized monotonic regression based on B-splines with an application to air pollution data. , 2007, Biostatistics.

[17]  H. Ishwaran,et al.  Exact and approximate sum representations for the Dirichlet process , 2002 .

[18]  P. Diggle,et al.  Additive isotonic regression models in epidemiology. , 2000, Statistics in medicine.

[19]  Peter D. Hoff,et al.  Bayesian methods for partial stochastic orderings , 2003 .

[20]  Jeffrey S. Racine,et al.  Cross-Validation and the Estimation of Conditional Probability Densities , 2004 .

[21]  D. Dunson,et al.  Bayesian isotonic density regression. , 2011, Biometrika.

[22]  Jeffrey S. Racine,et al.  Nonparametric Econometrics: The np Package , 2008 .

[23]  Stephen G. Walker,et al.  Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials , 2007 .

[24]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[25]  Epa Us,et al.  Guidelines for Carcinogen Risk Assessment, (Sept. 24) , 1996 .

[26]  D. Dunson,et al.  Bayesian Multivariate Isotonic Regression Splines , 2007 .

[27]  Anestis Antoniadis,et al.  BAYESIAN ESTIMATION IN SINGLE-INDEX MODELS , 2004 .

[28]  D. Dunson,et al.  Bayesian nonparametric inference on stochastic ordering. , 2008, Biometrika.

[29]  Yves Croissant,et al.  Panel data econometrics in R: The plm package , 2008 .

[30]  N. Pillai,et al.  Bayesian density regression , 2007 .

[31]  R. Dykstra,et al.  An Algorithm for Isotonic Regression for Two or More Independent Variables , 1982 .

[32]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[33]  Holger Dette,et al.  Strictly monotone and smooth nonparametric regression for two or more variables , 2005 .

[34]  T. Ferguson Some Developments of the Blackwell-MacQueen Urn Scheme , 2005 .

[35]  Haibo Zhou,et al.  Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth , 2001, The Lancet.

[36]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[37]  Steven Stern,et al.  Feasible Nonparametric Estimation of Multiargument Monotone Functions , 1994 .