Lignocellulose biotechnology: issues of bioconversion and enzyme production

This review is written from the perspective of scientists working in lignocellulose bioconversion in a developing country and the aim of this review is to remind ourselves and other scientists working in related areas of lignocellulose research of the enormous economic potential of the bioprocessing of residual plant materials generally regarded as “waste”, and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing. Key words : lignocellulose, bioconversion, enzyme cost. African Journal of Biotechnology Vol. 2 (12), pp. 602-619, December 2003

[1]  P. Broda,et al.  Lignin biodegradation: a molecular biological approach. , 1989, Essays in biochemistry.

[2]  B. Montenecourt,et al.  Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations , 1984, Applied Microbiology and Biotechnology.

[3]  O. Shoseyov,et al.  Cellulose-binding domains: biotechnological applications. , 2002, Biotechnology advances.

[4]  B. Ruggeri,et al.  Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by P. chrysosporium , 2003 .

[5]  J. Handelsman,et al.  Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms , 2000, Applied and Environmental Microbiology.

[6]  C. A. Reddy,et al.  Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium , 1986, Journal of bacteriology.

[7]  T. Wood Fungal cellulases. , 1992, Biochemical Society transactions.

[8]  M. Gold,et al.  MOLECULAR BIOLOGY OF LIGNIN-DEGRADING BASIDOMYCETE PHANEROCHAETE CHRYSOSPORIUM , 1993 .

[9]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[10]  D. S. Arora,et al.  Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw , 2002 .

[11]  F. Tjerneld,et al.  Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888 , 2003 .

[12]  G. Tiraby,et al.  Genetic improvement of Trichoderma reesei for large scale cellulase production , 1988 .

[13]  Antoni Planas,et al.  Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering , 2000 .

[14]  K. Mori,et al.  Identification of active site carboxylic residues in Trichoderma reesei endoglucanase Cel12A by site-directed mutagenesis , 2000 .

[15]  Poonam Singh Nee Nigam,et al.  PROCESSES FOR FERMENTATIVE PRODUCTION OF XYLITOL - A SUGAR SUBSTITUTE , 1995 .

[16]  H. Grethlein,et al.  Pretreatment for enhanced hydrolysis of cellulosic biomass. , 1984, Biotechnology advances.

[17]  K. Zeitsch,et al.  The Chemistry and Technology of Furfural and Its Many By-Products , 2000 .

[18]  O. Milstein,et al.  Isolation of microorganisms with lignin transformation potential from soil of Tenerife island , 1995 .

[19]  I. S. Pretorius,et al.  Engineering yeast for efficient cellulose degradation , 1998, Yeast.

[20]  J. Laherrère,et al.  The End of Cheap Oil , 1998 .

[21]  R. W. Detroy,et al.  Biological Delignification of 14C-Labeled Lignocelluloses by Basidiomycetes: Degradation and Solubilization of the Lignin and Cellulose Components , 1982 .

[22]  H. Driguez,et al.  Specificity Studies of Bacillus 1,3‐1,4‐β‐ Glucanases and Application to Glycosynthase‐Catalyzed Transglycosylation , 2002, Chembiochem : a European journal of chemical biology.

[23]  L. McIntosh,et al.  Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C. , 2000, Biochemistry.

[24]  M. Penttilä,et al.  Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. , 2001, FEMS microbiology letters.

[25]  F. M. Gama,et al.  Studies on the properties of Celluclast/Eudragit L-100 conjugate. , 2002, Journal of biotechnology.

[26]  K. Beauchemin,et al.  Use of Exogenous Fibrolytic Enzymes to Improve Feed Utilization by Ruminants , 2003 .

[27]  A. Sanromán,et al.  Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid-state bioreactor , 2000, Biotechnology Letters.

[28]  L. Jecu Solid state fermentation of agricultural wastes for endoglucanase production , 2000 .

[29]  D. Eveleigh Cellulase: a perspective , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Walter Steiner,et al.  Production of Trichoderma cellulase in laboratory and pilot scale , 1991 .

[31]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[32]  D. Wase,et al.  Comparisons between cellulase production by Aspergillus fumigatus in agitated vessels and in an air‐lift fermentor , 1985, Biotechnology and bioengineering.

[33]  C. Christophersen,et al.  Xylanases in Wheat Separation , 1997 .

[34]  Gerardo Saucedo-Castañeda,et al.  Scale-up strategies for solid state fermentation systems , 1992 .

[35]  H. Grethlein,et al.  Common aspects of acid prehydrolysis and steam explosion for pretreating wood , 1991 .

[36]  B. Saha Alpha-L-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. , 2000, Biotechnology advances.

[37]  G. V. Reddy,et al.  Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju) , 2003 .

[38]  R. A. Grayling,et al.  celB, a gene coding for a bifunctional cellulase from the extreme thermophile "Caldocellum saccharolyticum" , 1990, Applied and environmental microbiology.

[39]  O. S. Kotchoni,et al.  Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression , 2003 .

[40]  J. Saddler,et al.  Trichoderma Xylanases, Their Properties and Application , 1992 .

[41]  B. Dalrymple,et al.  The Neocallimastix patriciarum cellulase, CelD, contains three almost identical catalytic domains with high specific activities on Avicel , 1999 .

[42]  R. Bourbonnais,et al.  Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. , 1988, The Biochemical journal.

[43]  J. Buchert,et al.  Hemicellulases in the bleaching of chemical pulps. , 1997, Advances in biochemical engineering/biotechnology.

[44]  B. Henrissat,et al.  Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. , 2000, Plant physiology.

[45]  Sung-Wook Kang,et al.  Cellulase and xylanase production by Aspergillus niger KKS in various bioreactors , 1997 .

[46]  Petr Baldrian,et al.  Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. , 2003, FEMS microbiology letters.

[47]  M. Goto,et al.  Functional analysis of a hybrid endoglucanase of bacterial origin having a cellulose binding domain from a fungal exoglucanase , 1998, Applied biochemistry and biotechnology.

[48]  Candace H. Haigler Biosynthesis and Biodegradation of Cellulose , 1990 .

[49]  N. Walton,et al.  Molecules of Interest: Vanillin , 2003 .

[50]  D. Montané,et al.  High-temperature dilute-acid hydrolysis of olive stones for furfural production , 2002 .

[51]  S. Takasawa,et al.  Improvement of Cellulase Production in Trichoderma reesei , 1985 .

[52]  Jay J. Cheng,et al.  HYDROLYSIS OF LIGNOCELLULOSIC MATERIALS FOR ETHANOL PRODUCTION , 2002 .

[53]  R. Tengerdy,et al.  Lignocellulolytic enzyme production on pretreated poplar wood by filamentous fungi , 1997 .

[54]  A Bairoch,et al.  Updating the sequence-based classification of glycosyl hydrolases. , 1996, The Biochemical journal.

[55]  Q. Beg,et al.  Bacterial alkaline proteases: molecular approaches and industrial applications , 2002, Applied Microbiology and Biotechnology.

[56]  C. Hesseltine,et al.  Biotechnology report: Solid state fermentations , 1972, Biotechnology and bioengineering.

[57]  R. Mackie,et al.  Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. , 2003, FEMS microbiology reviews.

[58]  T. E. Cloete,et al.  Lignocellulose biodegradation: Fundamentals and applications , 2002 .

[59]  H. Call,et al.  History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process) , 1997 .

[60]  J. Woodward Immobilized cellulases for cellulose utilization , 1989 .

[61]  G. Xue,et al.  Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. , 1994, The Biochemical journal.

[62]  Richard T. Elander,et al.  Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol , 1997 .

[63]  S. Rodríguez Couto,et al.  New uses of food waste: application to laccase production by Trametes hirsuta , 2002, Biotechnology Letters.

[64]  F. Rombouts,et al.  Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride , 1987, Biotechnology and bioengineering.

[65]  Rafael Vicuña,et al.  Bacterial degradation of lignin , 1988 .

[66]  S. Withers Mechanisms of glycosyl transferases and hydrolases , 2001 .

[67]  D. Kilburn,et al.  A bifunctional exoglucanase-endoglucanase fusion protein. , 1987, Gene.

[68]  K. Beauchemin,et al.  Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages , 1995 .

[69]  C. Krishna Solid-State Fermentation Systems—An Overview , 2005, Critical reviews in biotechnology.

[70]  J. Wiseman,et al.  The use of enzymes in ruminant diets , 2001 .

[71]  M. Bhat,et al.  Research review paper Cellulases and related enzymes in biotechnology , 2000 .

[72]  B Henrissat,et al.  Glycoside hydrolases and glycosyltransferases: families and functional modules. , 2001, Current opinion in structural biology.

[73]  D. Kilburn,et al.  An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. , 1994, Protein engineering.

[74]  S. Aust,et al.  Engineering a Disulfide Bond in Recombinant Manganese Peroxidase Results in Increased Thermostability , 2000, Biotechnology progress.

[75]  P. Chahal,et al.  Production of Cellulase in Solid-State Fermentation with Trichoderma reesei MCG 80 on Wheat Straw , 1996 .

[76]  J N Saddler,et al.  Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates , 1995, Biotechnology and bioengineering.

[77]  W. Wong,et al.  Enhancement of extracellular production of a Cellulomonas fimi exoglucanase in Escherichia coli by the reduction of promoter strength. , 1997, Enzyme and microbial technology.

[78]  P. Kersten,et al.  Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium , 1987, Journal of bacteriology.

[79]  J. Handelsman,et al.  Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. , 1998, Chemistry & biology.

[80]  M. Linder,et al.  Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. , 1999, European journal of biochemistry.

[81]  A. Steinbüchel,et al.  Biotechnological production of vanillin , 2001, Applied Microbiology and Biotechnology.

[82]  F. Tjerneld,et al.  Fungal cellulolytic enzyme production: A review , 1991 .

[83]  X. Wang,et al.  Redesign of cytochrome c peroxidase into a manganese peroxidase: role of tryptophans in peroxidase activity. , 1999, Biochemistry.

[84]  M. Palcic Biocatalytic synthesis of oligosaccharides. , 1999, Current opinion in biotechnology.

[85]  L. Xia,et al.  Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry , 1999 .

[86]  A. Ball,et al.  Biosynthesis and Structure of Lignocellulose , 1991 .

[87]  R. C. Rodrigues,et al.  Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor , 2003 .

[88]  R. Burton,et al.  Bifunctional family 3 glycoside hydrolases from barley with alpha -L-arabinofuranosidase and beta -D-xylosidase activity. Characterization, primary structures, and COOH-terminal processing. , 2003, The Journal of biological chemistry.

[89]  John G. Anderson,et al.  Bioprocessing of lignocelluloses , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[90]  Tuula T. Teeri,et al.  Cellulase families and their genes , 1987 .

[91]  M. Rabinovich,et al.  Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial Cellulases (Review) , 2002, Applied Biochemistry and Microbiology.

[92]  D. Haltrich,et al.  Production of fungal xylanases , 1996 .

[93]  F. Bosco,et al.  Performances of a trickle-bed reactor (TBR) for exoenzymes production by Phanerochaete chrysosporium : influence of superfacial liquid velocity , 1999 .

[94]  José Manuel Domínguez,et al.  Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis , 1998 .

[95]  P Béguin,et al.  Molecular biology of cellulose degradation. , 1990, Annual review of microbiology.

[96]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[97]  A. Sethuraman,et al.  Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus , 1995, Applied and environmental microbiology.

[98]  Wolfgang Zimmermann,et al.  Degradation of lignin by bacteria , 1990 .

[99]  W. Bao,et al.  Triiodide reduction by cellobiose: quinone oxidoreductase of Phanerochaete chrysosporium , 1991, FEBS letters.

[100]  M. Rabinovich,et al.  The Structure and Mechanism of Action of Cellulolytic Enzymes , 2002, Biochemistry (Moscow).

[101]  D. Kilburn,et al.  Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. , 1995, The Biochemical journal.

[102]  K. Eriksson,et al.  Formation, purification, and partial characterisation of methanol oxidase, a H2O2-producing enzyme in Phanerochaete chrysosporium , 1987 .

[103]  J. Coombs EEC resources and strategies , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[104]  Ross E. Swaney,et al.  New technology for papermaking : commercializing biopulping , 1998 .

[105]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[106]  Q. Beg,et al.  Microbial xylanases and their industrial applications: a review , 2001, Applied Microbiology and Biotechnology.

[107]  S. Subramaniyan,et al.  Biotechnology of Microbial Xylanases: Enzymology, Molecular Biology, and Application , 2002, Critical reviews in biotechnology.

[108]  L. Walker,et al.  Enzymatic hydrolysis of cellulose: An overview , 1991 .

[109]  Douglas E. Eveleigh,et al.  Characteristics of fungal cellulases , 1991 .

[110]  Yi Lu,et al.  Redesign of Cytochrome c Peroxidase into a Manganese Peroxidase: Role of Tryptophans in Peroxidase Activity† , 1999 .

[111]  Alan J. McCarthy,et al.  Lignocellulose-degrading actinomycetes , 1987 .