Angiogram visualization and total velocity blood flow assessment based on intensity information analysis of OCT data

We propose two independent OCT data processing methods allowing visualization and analysis of the blood flow. These methods utilize variations in the OCT intensity images caused by flowing blood. The first method calculates standard deviation of intensity to generate retinal OCT angiograms. We present algorithm of this method and results of application for visualization of the microvasculature in the macular area of the human eye in vivo. The second method calculates cross power spectra of the volumetric intensity images to assess blood flow velocity in three dimensions. Validation of this method for OCT imaging was performed in a flow phantom.

[1]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[2]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[3]  M. Wojtkowski,et al.  Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. , 2008, Optics express.

[4]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[5]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[6]  Adrian Mariampillai,et al.  Optimized speckle variance OCT imaging of microvasculature. , 2010, Optics letters.

[7]  Shuichi Makita,et al.  Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. , 2008, Optics letters.

[8]  Amiram Grinvald,et al.  Special report: Noninvasive multi-parameter functional optical imaging of the eye. , 2005, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[9]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[10]  David A Boas,et al.  Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. , 2010, Optics letters.

[11]  Yuankai K. Tao,et al.  Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. , 2008, Optics express.

[12]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[13]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[14]  Shuichi Makita,et al.  Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. , 2011, Optics express.

[15]  Y. Yasuno,et al.  Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. , 2008, Optics express.

[16]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[17]  Maciej Wojtkowski,et al.  Efficient Reduction of Speckle Noise in Optical Coherence Tomography References and Links , 2022 .

[18]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[19]  Rainer A. Leitgeb,et al.  Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension , 2011 .

[20]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[21]  R. Leitgeb,et al.  Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. , 2011, Optics express.

[22]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.