On the stability of the continuous-time Kalman filter subject to exponentially decaying perturbations

Abstract This paper details the stability analysis of the continuous-time Kalman filter dynamics for linear time-varying systems subject to exponentially decaying perturbations. It is assumed that estimates of the input, output, and matrices of the system are available, but subject to unknown perturbations which decay exponentially with time. It is shown that if the nominal system is uniformly completely observable and uniformly completely controllable, and if the state, input, and matrices of the system are bounded, then the Kalman filter built using the perturbed estimates is a suitable state observer for the nominal system, featuring exponentially convergent error dynamics.

[1]  P. Olver Nonlinear Systems , 2013 .

[2]  Minyue Fu,et al.  Robust 𝒽∞ filtering for continuous time varying uncertain systems with deterministic input signals , 1995, IEEE Trans. Signal Process..

[3]  Minyue Fu,et al.  Robust filtering for uncertain linear discrete-time descriptor systems , 2008, Autom..

[4]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[5]  Ian R. Petersen,et al.  Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty , 1998, Autom..

[6]  J.C. Geromel,et al.  H/sub 2/ and H/sub /spl infin// robust filtering for convex bounded uncertain systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[7]  Huijun Gao,et al.  A new design of robust H2 filters for uncertain systems , 2008, Syst. Control. Lett..

[8]  Carlos Silvestre,et al.  Decentralized state observers for range‐based position and velocity estimation in acyclic formations with fixed topologies , 2016 .

[9]  M. Mahmoud Robust Control and Filtering for Time-Delay Systems , 2000 .

[10]  Richard S. Bucy,et al.  Global Theory of the Riccati Equation , 1967, J. Comput. Syst. Sci..

[11]  D. McFarlane,et al.  Optimal guaranteed cost control and filtering for uncertain linear systems , 1994, IEEE Trans. Autom. Control..

[12]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[13]  Ian R. Petersen,et al.  Robust Kalman Filtering for Signals and Systems with Large Uncertainties , 1999 .

[14]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[15]  G. Nicolao,et al.  Optimal robust filtering with time-varying parameter uncertainty , 1996 .

[16]  Maurício C. de Oliveira,et al.  H2 and H∞ robust filtering for convex bounded uncertain systems , 2001, IEEE Trans. Autom. Control..