Demonstration of active routing of entanglement in a multi-user network.

We implement an entanglement distribution network based on wavelength-multiplexing and optical switching for quantum communication applications. Using a high-brightness source based on spontaneous parametric down-conversion in periodically-poled lithium niobate waveguides, we generate polarisation entangled photon pairs with a broad spectrum covering the telecom wavelengths around 1550 nm. The photon pairs have entanglement fidelities up to 99%, and are distributed via passive wavelength multiplexing in a static multi-user network. We furthermore demonstrate a possible network application in a scenario with a single centralised source dynamically allocating two-party entanglement to any pair of users by means of optical switches. The whole system, from the pump laser up to the receivers, is fibre and waveguide based, resulting in maximal stability, minimal losses and the advantage of readily integrable telecom components in the 1550 nm range.

[1]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[2]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[3]  H. Weinfurter,et al.  A high brightness source of polarization entangled photons , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[4]  Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides , 2006 .

[5]  Gerald S. Buller,et al.  Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode , 2009 .

[6]  Thomas Jennewein,et al.  Generating polarization-entangled photon pairs using cross-spliced birefringent fibers. , 2012, Optics express.

[7]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[8]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[9]  Violation of Bell’s Inequality in 1550 nm Band without Subtraction of Accidental Coincidences , 2005 .

[10]  Fatih Yaman,et al.  Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization , 2007 .

[11]  H. Lo,et al.  Feasibility of quantum key distribution through a dense wavelength division multiplexing network , 2010, 1006.0726.

[12]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[13]  Xudong Jiang,et al.  An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode. , 2012, The Review of scientific instruments.

[14]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[15]  Jun Chen,et al.  Generation of high purity telecom-band entangled photon-pairs in dispersion-shifted fiber , 2006, QELS 2006.

[16]  A. Zeilinger,et al.  Three-color Sagnac source of polarization-entangled photon pairs. , 2009, Optics express.

[17]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[18]  Christian Kurtsiefer,et al.  Daylight operation of a free space, entanglement-based quantum key distribution system , 2008, 0812.1880.

[19]  Thomas Matyus,et al.  A fully automated entanglement-based quantum cryptography system for telecom fiber networks , 2009, 0901.2725.

[20]  Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. , 2008, Optics express.

[21]  T Honjo,et al.  Long-distance entanglement-based quantum key distribution over optical fiber. , 2008, Optics express.

[22]  Imad Agha,et al.  Experimental wavelength-division-multiplexed photon-pair distribution. , 2013, Optics letters.

[23]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[24]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[25]  Akio Yoshizawa,et al.  Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. , 2008, Optics express.

[26]  M. Ibsen,et al.  Direct generation of polarization-entangled photon pairs in a poled fiber. , 2012, Physical review letters.

[27]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[28]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[29]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[30]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[31]  Marco Fiorentino,et al.  Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. , 2007, Optics express.

[32]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[33]  S. Arahira,et al.  Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide. , 2011, Optics express.

[34]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[35]  Rupert Ursin,et al.  Feasibility of 300 km quantum key distribution with entangled states , 2009, 1007.4645.

[36]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[37]  G. Kanter,et al.  Robust Multiwavelength All-Fiber Source of Polarization-Entangled Photons With Built-In Analyzer Alignment Signal , 2009, IEEE Journal of Selected Topics in Quantum Electronics.