Memory-constrained algorithms for simple polygons
暂无分享,去创建一个
Günter Rote | Tetsuo Asano | Wolfgang Mulzer | Kevin Buchin | Maike Buchin | Matias Korman | André Schulz | G. Rote | T. Asano | M. Buchin | K. Buchin | A. Schulz | Matias Korman | Wolfgang Mulzer
[1] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[2] S. Muthukrishnan,et al. Data streams: algorithms and applications , 2005, SODA '03.
[3] Raimund Seidel. Convex Hull Computations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[4] Robert E. Tarjan,et al. Triangulating a Simple Polygon , 1978, Inf. Process. Lett..
[5] Luis Barba,et al. Computing the Visibility Polygon Using Few Variables , 2011, ISAAC.
[6] Timothy M. Chan,et al. Towards in-place geometric algorithms and data structures , 2004, SCG '04.
[7] Mark de Berg,et al. Computational Geometry: Algorithms and Applications, Second Edition , 2000 .
[8] Bernard Chazelle,et al. A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[9] Leonidas J. Guibas,et al. Optimal shortest path queries in a simple polygon , 1987, SCG '87.
[10] Yajun Wang,et al. Constant-Work-Space Algorithms for Shortest Paths in Trees and Simple Polygons , 2011, J. Graph Algorithms Appl..
[11] Omer Reingold,et al. Undirected connectivity in log-space , 2008, JACM.
[12] Pat Morin,et al. Space-efficient planar convex hull algorithms , 2004, Theor. Comput. Sci..
[13] Alain Fournier,et al. Triangulating Simple Polygons and Equivalent Problems , 1984, TOGS.
[14] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[15] Sanjeev Khanna,et al. Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.
[16] Hazel Everett,et al. Slicing an ear using prune-and-search , 1993, Pattern Recognit. Lett..
[17] Timothy M. Chan,et al. Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection , 2010, Comput. Geom..
[18] Kunihiko Sadakane,et al. Space–Time Trade-offs for Stack-Based Algorithms , 2012, Algorithmica.
[19] J. Ian Munro,et al. Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).
[20] Greg N. Frederickson,et al. Upper Bounds for Time-Space Trade-Offs in Sorting and Selection , 1987, J. Comput. Syst. Sci..
[21] Günter Rote,et al. Constant-Working-Space Algorithms for Geometric Problems , 2009, CCCG.
[22] Venkatesh Raman,et al. Improved Upper Bounds for Time-Space Tradeoffs for Selection with Limited Storage , 1998, SWAT.
[23] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[24] Günter Rote,et al. Reprint of: Memory-constrained algorithms for simple polygons , 2014, Comput. Geom..
[25] Timothy M. Chan,et al. Space-efficient algorithms for computing the convex hull of a simple polygonal line in linear time , 2004, Comput. Geom..
[26] Guy Joseph Jacobson,et al. Succinct static data structures , 1988 .
[27] Venkatesh Raman,et al. Selection from Read-Only Memory and Sorting with Minimum Data Movement , 1996, Theor. Comput. Sci..
[28] Luis Barba,et al. Computing a visibility polygon using few variables , 2011, Comput. Geom..
[29] Timothy M. Chan,et al. Multi-Pass Geometric Algorithms , 2005, Discret. Comput. Geom..
[30] Timothy M. Chan. Comparison-based time-space lower bounds for selection , 2009, TALG.
[31] Bernard Chazelle,et al. Triangulation and shape-complexity , 1984, TOGS.