The use of O2 1.27 µm absorption band revisited for GHG monitoring from space and application to MicroCarb
暂无分享,去创建一个
F. Bréon | F. Lefévre | D. Jouglet | A. Hauchecorne | J. Bertaux | L. Blanot | P. Lafrique | P. Akaev
[1] Anonymous,et al. Comments to “Improved Retrievals of Carbon Dioxide from the Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm” , 2018 .
[2] S. Wofsy,et al. Reevaluating the Use of O2 a1Δg Band in Spaceborne Remote Sensing of Greenhouse Gases , 2018, Geophysical Research Letters.
[3] Atul K. Jain,et al. Global Carbon Budget 2018 , 2014, Earth System Science Data.
[4] D. Marsh,et al. Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations , 2017 .
[5] J. Burrows,et al. Retrieval of O 2 ( 1 Σ) and O 2 ( 1 Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans , 2017 .
[6] A. Vandaele,et al. Retrieval and validation of METOP/IASI methane , 2017 .
[7] V. L. Orkin,et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .
[8] T. Encrenaz,et al. Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF 4.53μm observations , 2015 .
[9] Akihiko Kuze,et al. Consistent satellite XCO 2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm , 2015 .
[10] Stanley P. Sander,et al. NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .
[11] Corinne Le Quéré,et al. Carbon and Other Biogeochemical Cycles , 2014 .
[12] Hartmut Boesch,et al. Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission , 2011, Remote. Sens..
[13] F. Lefévre,et al. First Detection of O2 Recombination Nightglow Emission at 1.27 µm in the Atmosphere of Mars With OMEGA/MEX and Comparison with Model , 2011 .
[14] G. Barrot,et al. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT , 2010 .
[15] Tatsuya Yokota,et al. Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite , 2010 .
[16] G. Brasseur,et al. Aeronomy of the Middle Atmosphere , 2009 .
[17] Tatsuya Yokota,et al. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .
[18] N. N. Shefov,et al. Airglow as an Indicator of Upper Atmospheric Structure and Dynamics , 2008 .
[19] Laurence S. Rothman,et al. Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database , 2006 .
[20] Gang Li,et al. The HITRAN 2008 molecular spectroscopic database , 2005 .
[21] J. T. Wiensz. Ozone retrievals from the oxygen infrared channels of the Osiris infrared imager , 2005 .
[22] U. Grabowski,et al. Evidence for CH4 7.6 μm non‐local thermodynamic equilibrium emission in the mesosphere , 2005 .
[23] E. J. Llewellyn,et al. The OSIRIS instrument on the Odin spacecraft , 2004 .
[24] C. Sioris. Impact of the dayglow and the Ring effect on the retrieval of surface pressure from the A and B bands of O2: application to Orbiting Carbon Observatory , 2003 .
[25] Peter J. Rayner,et al. Global observations of the carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2 , 2002 .
[26] G. Toon,et al. Spaceborne measurements of atmospheric CO2 by high‐resolution NIR spectrometry of reflected sunlight: An introductory study , 2002 .
[27] David A. Newnham,et al. Integrated absorption intensity and Einstein coefficients for the O2 a1Δg-X3Σg- (0,0) transition: a comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell , 1999 .
[28] M. Buchwitz,et al. SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .
[29] Sasha Madronich,et al. The Role of Solar Radiation in Atmospheric Chemistry , 1999 .
[30] Doran J. Baker,et al. Decay of O2(a¹Δg) in the evening twilight airglow: Implications for the radiative lifetime , 1996 .
[31] Martin G. Mlynczak,et al. On the utility of the molecular oxygen dayglow emissions as proxies for middle atmospheric ozone , 1995 .
[32] G. Brasseur,et al. Chemistry of the 1991–1992 stratospheric winter: Three‐dimensional model simulations , 1994 .
[33] M. Mlynczak,et al. A detailed evaluation of the heating efficiency in the middle atmosphere , 1993 .
[34] C. Zeippen,et al. Excitation energies and oscillator strengths for the allowed transitions 2p4 3P to 2s2p5 3P0 and 2p4 1D, 1S to 2s2p5 1P0 in the O I isoelectronic sequence , 1988 .
[35] H. Sekiguchi,et al. Infrared Atmospheric Band Airglow Radiometer on Board the Satellite OHZORA , 1988 .
[36] David W. Rusch,et al. Solar Mesosphere Explorer Near-Infrared Spectrometer: Measurements of 1.27-μm radiances and the inference of mesospheric ozone , 1984 .
[37] A. Chedin,et al. A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .
[38] W. Traub,et al. Detection of O2 dayglow emission from Mars and the Martian ozone abundance , 1976 .
[39] D. Baker,et al. Twilight transition spectra of atmospheric O2 Ir emissions , 1975 .
[40] D. Hunten,et al. Altitude profile of the infrared atmospheric system of oxygen in the dayglow , 1968 .
[41] A. V. Jones,et al. Observation of the (0,0) Band of the (1Δg–3Σg−) System of Oxygen in the Day and Twilight Airglow , 1962, Nature.