Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents

[1]  Xiao-jing He,et al.  Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium , 2017 .

[2]  Jorge Gonzalez-Estrella,et al.  Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity. , 2017, Chemosphere.

[3]  R. Zanella,et al.  Hydrogen production by tailoring the brookite and Cu2O ratio of sol-gel Cu-TiO2 photocatalysts. , 2017, Chemosphere.

[4]  M. Biesinger Advanced analysis of copper X‐ray photoelectron spectra , 2017 .

[5]  I. Medina-Ramírez,et al.  Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light , 2017 .

[6]  Juan Xu,et al.  Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency , 2016, Scientific Reports.

[7]  P. Guzmán,et al.  Evaluation of the Antimicrobial Activity of Nanostructured Materials of Titanium Dioxide Doped with Silver and/or Copper and Their Effects on Arabidopsis thaliana , 2016 .

[8]  Stefanos Giannakis,et al.  Insight on the photocatalytic bacterial inactivation by co-sputtered TiO2–Cu in aerobic and anaerobic conditions , 2016 .

[9]  B. Ohtani,et al.  Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis , 2016 .

[10]  T. Hoang,et al.  Copper toxicity and the influence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species. , 2016, Chemosphere.

[11]  A. Umar,et al.  Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs , 2016 .

[12]  I. Baklanova,et al.  Synthesis, spectral, optical and photocatalytic properties of vanadium- and carbon-doped titanium dioxide with three-dimensional architecture of aggregates , 2016 .

[13]  A. Al-Muhtaseb,et al.  Photocatalytic disinfection of Escherichia coli using TiO2 P25 and Cu-doped TiO2 , 2015 .

[14]  K. Hashimoto,et al.  Visible-light sensitive Cu(II)–TiO2 with sustained anti-viral activity for efficient indoor environmental remediation , 2015 .

[15]  Shaojun Chen,et al.  Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles , 2014 .

[16]  Sixto Malato,et al.  Advanced oxidation processes for environmental protection , 2014, Environmental Science and Pollution Research.

[17]  V. Harabagiu,et al.  TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process. , 2014, Journal of hazardous materials.

[18]  A. K. Ray,et al.  Enhanced Solar Photocatalytic Degradation of Phenol with Coupled Graphene-Based Titanium Dioxide and Zinc Oxide , 2014 .

[19]  Xiwang Zhang,et al.  Recent progresses on fabrication of photocatalytic membranes for water treatment , 2014 .

[20]  J. Liu,et al.  Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst , 2014, Journal of Materials Science.

[21]  S. Mali,et al.  Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity , 2014 .

[22]  Byeong-Kyu Lee,et al.  Cu doped TiO2/GF for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: Application and mechanism , 2014 .

[23]  Stephanie E. Sanders,et al.  Uptake and Impact of Silver Nanoparticles on Brassica rapa: An Environmental Nanoscience Laboratory Sequence for a Nonmajors Course , 2014 .

[24]  Jorge L Gardea-Torresdey,et al.  Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. , 2014, Advances in colloid and interface science.

[25]  J. Fierro,et al.  Microwave-assisted synthesis of (S)Fe/TiO2 systems: Effects of synthesis conditions and dopant concentration on photoactivity , 2013 .

[26]  Hyunwoong Park,et al.  Surface modification of TiO2 photocatalyst for environmental applications , 2013 .

[27]  J. J. Gallardo,et al.  A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap , 2013 .

[28]  T. Waite,et al.  Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production , 2013 .

[29]  Bernd Giese,et al.  Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. , 2013, Chemical reviews.

[30]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[31]  S. Pillai,et al.  Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination , 2013 .

[32]  T. Ramalho,et al.  TiO2–Cu photocatalysts: a study on the long- and short-range chemical environment of the dopant , 2013, Journal of Materials Science.

[33]  Dan Bu,et al.  Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline , 2013 .

[34]  G. Marcì,et al.  A survey of photocatalytic materials for environmental remediation. , 2012, Journal of hazardous materials.

[35]  R. Amal,et al.  Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. , 2012, The journal of physical chemistry letters.

[36]  Herman Autrup,et al.  Toxicity of silver nanoparticles - nanoparticle or silver ion? , 2012, Toxicology letters.

[37]  Paul Westerhoff,et al.  Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. , 2012, Journal of hazardous materials.

[38]  P. Heide,et al.  X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices , 2011 .

[39]  A. Dana,et al.  Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources , 2011 .

[40]  S. Bashir,et al.  Facile design and nanostructural evaluation of silver-modified titania used as disinfectant. , 2011, Dalton transactions.

[41]  J. Liu,et al.  Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. , 2010, Colloids and surfaces. B, Biointerfaces.

[42]  C. Saint,et al.  Recent developments in photocatalytic water treatment technology: a review. , 2010, Water research.

[43]  M. I. Maldonado,et al.  Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in a pilot plant , 2010 .

[44]  Kaixue Wang,et al.  Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material. , 2010, ACS applied materials & interfaces.

[45]  R. López,et al.  PHOTOPHYSICAL AND PHOTOCATALYTIC PROPERTIES OF NANOSIZED COPPER-DOPED TITANIA SOL-GEL CATALYSTS , 2009 .

[46]  R. Ullah,et al.  Strategies of making TiO2 and ZnO visible light active. , 2009, Journal of hazardous materials.

[47]  Julián Blanco,et al.  Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends , 2009 .

[48]  D. Barceló,et al.  Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: Kinetics and characterization of major intermediate products , 2009 .

[49]  H. Fu,et al.  Effect of surface species on Cu-TiO2 photocatalytic activity , 2008 .

[50]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[51]  Elias Stathatos,et al.  Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems , 2007 .

[52]  T. Albanis,et al.  Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions , 2006 .

[53]  G. Colón,et al.  Cu-doped TiO2 systems with improved photocatalytic activity , 2006 .

[54]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[55]  G. Marcì,et al.  Degradation of lincomycin in aqueous medium : Coupling of solar photocatalysis and membrane separation , 2005 .

[56]  M. I. Maldonado,et al.  Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale , 2005 .

[57]  Sixto Malato,et al.  Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. , 2005, Chemosphere.

[58]  C. Vörösmarty,et al.  Global water resources: vulnerability from climate change and population growth. , 2000, Science.

[59]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .