Compact Argumentation Frameworks

Abstract argumentation frameworks (AFs) are one of the most studied formalisms in AI. In this work, we introduce a certain subclass of AFs which we call compact. Given an extension-based semantics, the corresponding compact AFs are characterized by the feature that each argument of the AF occurs in at least one extension. This not only guarantees a certain notion of fairness; compact AFs are thus also minimal in the sense that no argument can be removed without changing the outcome. We address the following questions in the paper: (1) How are the classes of compact AFs related for different semantics? (2) Under which circumstances can AFs be transformed into equivalent compact ones? (3) Finally, we show that compact AFs are indeed a non-trivial subclass, since the verification problem remains coNP-hard for certain semantics.

[1]  Stefan Woltran,et al.  On the Intertranslatability of Argumentation Semantics , 2011, J. Artif. Intell. Res..

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Pietro Baroni,et al.  A systematic classification of argumentation frameworks where semantics agree , 2008, COMMA.

[4]  Yannis Dimopoulos,et al.  Graph theoretical structures in logic programs and default theories , 1996 .

[5]  Thomas Linsbichler,et al.  Characteristics of multiple viewpoints in abstract argumentation , 2014, Artif. Intell..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Pierre Marquis,et al.  Symmetric Argumentation Frameworks , 2005, ECSQARU.

[8]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[9]  Stefan Woltran,et al.  Complexity-sensitive decision procedures for abstract argumentation , 2012, Artif. Intell..

[10]  Hannes Strass,et al.  On the Maximal and Average Numbers of Stable Extensions , 2013, TAFA.

[11]  G. Winskel What Is Discrete Mathematics , 2007 .

[12]  Yannis Dimopoulos,et al.  Graph Theoretical Structures in Logic Programs and Default Theories , 1996, Theor. Comput. Sci..

[13]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[14]  Min-Jen Jou,et al.  Trees with the second largest number of maximal independent sets , 2009, Discret. Math..

[15]  Jerrold R. Griggs,et al.  The number of maximal independent sets in a connected graph , 1988, Discret. Math..

[16]  J. Moon,et al.  On cliques in graphs , 1965 .

[17]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[18]  Bart Verheij,et al.  Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages , 1999 .

[19]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[20]  Paul E. Dunne,et al.  Computational properties of argument systems satisfying graph-theoretic constraints , 2007, Artif. Intell..

[21]  Pavlos Moraitis,et al.  Making Decisions through Preference-Based Argumentation , 2008, KR.

[22]  Xueliang Li,et al.  Graphs with the second largest number of maximal independent sets , 2008, Discret. Math..

[23]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[24]  Trevor J. M. Bench-Capon,et al.  Coherence in finite argument systems , 2002, Artif. Intell..