A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions

We consider dierential inclusions where a positive semidenite function of the solutions satises a class-KL estimate in terms of time and a second positive semidenite function of the initial condition. We show that a smooth converse Lyapunov function, i.e., one whose derivative along solutions can be used to establish the class-KL estimate, exists if and only if the class-KL estimate is robust, i.e., it holds for a larger, perturbed dierential inclusion. It remains an open question whether all class-KL estimates are robust. One sucient condition for robustness is that the original dierential inclusion is locally Lipschitz. Another sucient condition is that the two positive semidenite functions agree and a backward completability condition holds. These special cases unify and generalize many results on converse Lyapunov theorems for dierential equations and dierential inclusions that have appeared in the literature.

[1]  J. L. Massera On Liapounoff's Conditions of Stability , 1949 .

[2]  I. P. Natanson,et al.  Theory of Functions of a Real Variable , 1955 .

[3]  J. L. Massera Contributions to Stability Theory , 1956 .

[4]  Jaroslav Kurzweil,et al.  Об обращении второй теоремы Ляпунова об устойчивости движения , 1956 .

[5]  A. F. Filippov On Certain Questions in the Theory of Optimal Control , 1962 .

[6]  F. Hoppensteadt Singular perturbations on the infinite interval , 1966 .

[7]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[8]  F. Wilson,et al.  Smoothing derivatives of functions and applications , 1969 .

[9]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[10]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[11]  V. Lakshmikantham,et al.  Stability Analysis of Nonlinear Systems , 1988 .

[12]  John Tsinias A Lyapunov description of stability in control systems , 1988 .

[13]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[14]  E. P. Ryan,et al.  Discontinuous Feedback and Universal Adaptive Stabilization , 1990 .

[15]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[16]  F. Clarke,et al.  Subgradient Criteria for Monotonicity, The Lipschitz Condition, and Convexity , 1993, Canadian Journal of Mathematics.

[17]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[18]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[19]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[20]  Eduardo Sontag,et al.  A notion of input to output stability , 1997, 1997 European Control Conference (ECC).

[21]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[22]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[23]  Hassan K. Khalil,et al.  A separation principle for the control of a class of nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[24]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[25]  Andrea Bacciotti,et al.  Liapunov and lagrange stability: Inverse theorems for discontinuous systems , 1998, Math. Control. Signals Syst..

[26]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[27]  Eduardo Sontag,et al.  Notions of input to output stability , 1999, Systems & Control Letters.

[28]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..