DNA nanotechnology: understanding and optimisation through simulation

DNA nanotechnology promises to provide controllable self-assembly on the nanoscale, allowing for the design of static structures, dynamic machines and computational architectures. In this article, I review the state-of-the art of DNA nanotechnology, highlighting the need for a more detailed understanding of the key processes, both in terms of theoretical modelling and experimental characterisation. I then consider coarse-grained models of DNA, mesoscale descriptions that have the potential to provide great insight into the operation of DNA nanotechnology if they are well designed. In particular, I discuss a number of nanotechnological systems that have been studied with oxDNA, a recently developed coarse-grained model, highlighting the subtle interplay of kinetic, thermodynamic and mechanical factors that can determine behaviour. Finally, new results highlighting the importance of mechanical tension in the operation of a two-footed walker are presented, demonstrating that recovery from an unintended ‘overstepped’ configuration can be accelerated by three to four orders of magnitude by application of a moderate tension to the walker's track. More generally, the walker illustrates the possibility of biasing strand-displacement processes to affect the overall rate.

[1]  N. Destainville,et al.  Slow closure of denaturation bubbles in DNA: twist matters. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  D. Thirumalai,et al.  Mechanical unfolding of RNA hairpins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[4]  Alexey V Onufriev,et al.  Heat conductivity of DNA double helix. , 2010, Physical review. B, Condensed matter and materials physics.

[5]  T. Ouldridge Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble. , 2012, The Journal of chemical physics.

[6]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[7]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[8]  A. Liwo,et al.  Mean-field interactions between nucleic-acid-base dipoles can drive the formation of a double helix. , 2013, Physical review letters.

[9]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[10]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[11]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[12]  A. Turberfield,et al.  Engineering a 2D protein-DNA crystal. , 2005, Angewandte Chemie.

[13]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[14]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hao Yan,et al.  DNA-directed artificial light-harvesting antenna. , 2011, Journal of the American Chemical Society.

[16]  M. V. Tretyakov,et al.  Langevin thermostat for rigid body dynamics. , 2009, The Journal of chemical physics.

[17]  B. Shapiro,et al.  Coarse-graining RNA nanostructures for molecular dynamics simulations , 2010, Physical biology.

[18]  J. Rottler,et al.  A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. , 2009, The Journal of chemical physics.

[19]  Hao Yan,et al.  Complex Archimedean tiling self-assembled from DNA nanostructures. , 2013, Journal of the American Chemical Society.

[20]  Niels Grønbech-Jensen,et al.  Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA. , 2005, The Journal of chemical physics.

[21]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[22]  M. Cieplak,et al.  Stretching and twisting of the DNA duplexes in coarse-grained dynamical models , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  P. Hagerman,et al.  Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of poly(dT) and poly(dA). , 1999, Journal of molecular biology.

[24]  A. Mazur,et al.  DNA flexibility on short length scales probed by atomic force microscopy. , 2013, Physical review letters.

[25]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[26]  Jejoong Yoo,et al.  In situ structure and dynamics of DNA origami determined through molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[27]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[28]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[29]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[30]  Hari K. K. Subramanian,et al.  The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. , 2011, Nano letters.

[31]  J. Elezgaray,et al.  Modeling the mechanical properties of DNA nanostructures. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  R. K. Brown BIOPHYSICS , 1931 .

[33]  S. Whitelam,et al.  The role of collective motion in examples of coarsening and self-assembly. , 2008, Soft matter.

[34]  Russell P. Goodman,et al.  A self-assembled DNA bipyramid. , 2007, Journal of the American Chemical Society.

[35]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[36]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[37]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[38]  J. Doye,et al.  Sequence-dependent thermodynamics of a coarse-grained DNA model. , 2012, The Journal of chemical physics.

[39]  Yi Cui,et al.  Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. , 2014, Journal of the American Chemical Society.

[40]  P. Hagerman Flexibility of DNA. , 1988, Annual review of biophysics and biophysical chemistry.

[41]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[42]  Georg Seelig,et al.  Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. , 2013, Nature chemistry.

[43]  Flavio Romano,et al.  A nucleotide-level coarse-grained model of RNA. , 2014, The Journal of chemical physics.

[44]  Brittany M. Rauzan,et al.  Modeling stopped-flow data for nucleic acid duplex formation reactions: the importance of off-path intermediates. , 2013, The journal of physical chemistry. B.

[45]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[46]  Miran Liber,et al.  Rational design of DNA motors: fuel optimization through single-molecule fluorescence. , 2013, Journal of the American Chemical Society.

[47]  D. Keller,et al.  Coarse-grained model DNA: structure, sequences, stems, circles, hairpins. , 2012, The journal of physical chemistry. B.

[48]  A. Travesset,et al.  Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. , 2011, Physical review letters.

[49]  Friedrich C Simmel,et al.  Robustness of localized DNA strand displacement cascades. , 2014, ACS nano.

[50]  D. Frenkel,et al.  Numerical evidence for nucleated self-assembly of DNA brick structures. , 2014, Physical review letters.

[51]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[52]  Jun Wei,et al.  Autonomous synergic control of nanomotors. , 2014, ACS nano.

[53]  F. Sciortino,et al.  Gels of DNA nanostars never crystallize. , 2014, ACS nano.

[54]  B. Nordén,et al.  DNA closed nanostructures: a structural and Monte Carlo simulation study. , 2008, The journal of physical chemistry. B.

[55]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[56]  Rosalind J Allen,et al.  Forward flux sampling for rare event simulations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  A. Turberfield,et al.  Mechanism for a directional, processive, and reversible DNA motor. , 2009, Small.

[58]  D. Schwartz,et al.  A coarse grain model for DNA. , 2007, The Journal of chemical physics.

[59]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[60]  Chengde Mao,et al.  A nanomotor involves a metastable, left-handed DNA duplex. , 2014, Organic & biomolecular chemistry.

[61]  D. Baker,et al.  Automated de novo prediction of native-like RNA tertiary structures , 2007, Proceedings of the National Academy of Sciences.

[62]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[63]  Qiuping Guo,et al.  A new class of homogeneous nucleic acid probes based on specific displacement hybridization. , 2002, Nucleic acids research.

[64]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[65]  Hao Yan,et al.  A DNA tweezer-actuated enzyme nanoreactor , 2013, Nature Communications.

[66]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[67]  G. Zocchi,et al.  Mechanical control of Renilla luciferase. , 2013, Journal of the American Chemical Society.

[68]  Richard A. Muscat,et al.  A programmable molecular robot. , 2011, Nano letters.

[69]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[70]  A. Turberfield,et al.  Non-covalent single transcription factor encapsulation inside a DNA cage. , 2013, Angewandte Chemie.

[71]  Margaret E. Johnson,et al.  Representability problems for coarse-grained water potentials. , 2007, The Journal of chemical physics.

[72]  John M. Stubbs,et al.  Application of a coarse-grained model for DNA to homo- and heterogeneous melting equilibria , 2010 .

[73]  F. Sciortino,et al.  Phase behavior and critical activated dynamics of limited-valence DNA nanostars , 2013, Proceedings of the National Academy of Sciences.

[74]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[75]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[76]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[77]  John Russo,et al.  Reversible gels of patchy particles: role of the valence. , 2009, The Journal of chemical physics.

[78]  Harold Fellermann,et al.  DNA Self-Assembly and Computation Studied with a Coarse-Grained Dynamic Bonded Model , 2012, DNA.

[79]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[80]  A. Laaksonen,et al.  A Solvent-Mediated Coarse-Grained Model of DNA Derived with the Systematic Newton Inversion Method. , 2014, Journal of chemical theory and computation.

[81]  A. Turberfield,et al.  Programmable one-pot multistep organic synthesis using DNA junctions. , 2012, Journal of the American Chemical Society.

[82]  Pengyu Ren,et al.  RNA 3D structure prediction by using a coarse-grained model and experimental data. , 2013, The journal of physical chemistry. B.

[83]  Juan J. de Pablo,et al.  Molecular pathways in DNA-DNA hybridization of surface-bound oligonucleotides , 2011 .

[84]  Maher Moakher,et al.  On the parameterization of rigid base and basepair models of DNA from molecular dynamics simulations. , 2009, Physical chemistry chemical physics : PCCP.

[85]  Nils B Becker,et al.  From rigid base pairs to semiflexible polymers: coarse-graining DNA. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[87]  J. Elezgaray,et al.  Folding of small origamis. , 2012, The Journal of chemical physics.

[88]  Hao Yan,et al.  Multifactorial modulation of binding and dissociation kinetics on two-dimensional DNA nanostructures. , 2013, Nano letters.

[89]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[90]  D. Jost,et al.  Prediction of RNA multiloop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model. , 2010, The Journal of chemical physics.

[91]  R. Guimerà,et al.  Mesoscopic modeling for nucleic acid chain dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Chad A Mirkin,et al.  Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. , 2012, Nano letters.

[93]  Peng Yin,et al.  Optimizing the specificity of nucleic acid hybridization. , 2012, Nature chemistry.

[94]  T. Ha,et al.  Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. , 2004, Biophysical journal.

[95]  Yonggang Ke,et al.  Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. , 2012, Chemical science.

[96]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[97]  D Thirumalai,et al.  Coarse-grained model for predicting RNA folding thermodynamics. , 2013, The journal of physical chemistry. B.

[98]  S. Harrison,et al.  Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching , 2011, Nature.

[99]  Iain G. Johnston,et al.  The self-assembly of DNA Holliday junctions studied with a minimal model. , 2008, The Journal of chemical physics.

[100]  F. Ding,et al.  Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. , 2008, RNA.

[101]  S. Wereley,et al.  soft matter , 2019, Science.

[102]  G. von Kiedrowski,et al.  Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers. , 2008, Angewandte Chemie.

[103]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[104]  T. Knotts,et al.  Exploring the mechanisms of DNA hybridization on a surface. , 2013, The Journal of chemical physics.

[105]  Miran Liber,et al.  Detailed study of DNA hairpin dynamics using single-molecule fluorescence assisted by DNA origami. , 2013, The journal of physical chemistry. B.

[106]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[107]  Nadrian C Seeman,et al.  Crystal structure of a continuous three-dimensional DNA lattice. , 2004, Chemistry & biology.

[108]  G. Schatz,et al.  DNA melting in small-molecule-DNA-hybrid dimer structures: experimental characterization and coarse-grained molecular dynamics simulations. , 2010, The journal of physical chemistry. B.

[109]  B. Pettitt,et al.  Modeling DNA thermodynamics under torsional stress. , 2014, Biophysical journal.

[110]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[111]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[112]  John H Allen,et al.  Effect of surface binding on heterogeneous DNA melting equilibria: a Monte Carlo simulation study. , 2011, The journal of physical chemistry. B.

[113]  Jonathan Bath,et al.  Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker. , 2013, ACS nano.

[114]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[115]  J. Araque,et al.  Lattice model of oligonucleotide hybridization in solution. I. Model and thermodynamics. , 2011, The Journal of chemical physics.

[116]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[117]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[118]  西村 善文 W. Saenger: Principles of Nucleic Acid Structure, Springer-Verlag, New York and Berlin, 1984, xx+556ページ, 24.5×16.5cm, 14,160円 (Springer Advanced Texts in Chemistry). , 1985 .

[119]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[120]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[121]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[122]  Song Cao,et al.  Predicting RNA pseudoknot folding thermodynamics , 2006, Nucleic acids research.

[123]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[124]  E. A. Zubova,et al.  New coarse-grained DNA model , 2011, Biofizika.

[125]  Rob Phillips,et al.  High flexibility of DNA on short length scales probed by atomic force microscopy , 2006, Nature nanotechnology.

[126]  Cameron Myhrvold,et al.  Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. , 2013, Nano letters.

[127]  J J de Pablo,et al.  A mesoscale model of DNA and its renaturation. , 2009, Biophysical journal.

[128]  A. Kabakçıoğlu,et al.  Twist-writhe partitioning in a coarse-grained DNA minicircle model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[130]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[131]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[132]  M. Rief,et al.  Rigid DNA Beams for High-Resolution Single-Molecule Mechanics** , 2013, Angewandte Chemie.

[133]  Alex Dickson,et al.  Flow-Dependent Unfolding and Refolding of an RNA by Nonequilibrium Umbrella Sampling. , 2011, Journal of chemical theory and computation.

[134]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[135]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[136]  Taekjip Ha,et al.  Extreme Bendability of DNA Less than 100 Base Pairs Long Revealed by Single-Molecule Cyclization , 2012, Science.

[137]  Lorenzo Rovigatti,et al.  Coarse-graining DNA for simulations of DNA nanotechnology. , 2013, Physical chemistry chemical physics : PCCP.

[138]  Faisal A. Aldaye,et al.  Modular access to structurally switchable 3D discrete DNA assemblies. , 2007, Journal of the American Chemical Society.

[139]  A. Turberfield,et al.  DNA-templated protein arrays for single-molecule imaging. , 2011, Nano letters.

[140]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[141]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[142]  Satoyuki Kawano,et al.  Development of coarse-graining DNA models for single-nucleotide resolution analysis , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[143]  Carsten Svaneborg,et al.  LAMMPS framework for dynamic bonding and an application modeling DNA , 2011, Comput. Phys. Commun..

[144]  J. Maddocks,et al.  A sequence-dependent rigid-base model of DNA. , 2013, The Journal of chemical physics.

[145]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[146]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[147]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[148]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[149]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[150]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.

[151]  T. Ha,et al.  A Coarse-Grained Model of Unstructured Single-Stranded DNA Derived from Atomistic Simulation and Single-Molecule Experiment , 2014, Journal of chemical theory and computation.

[152]  A method to study in vivo stability of DNA nanostructures☆ , 2013, Methods.

[153]  J. Doye,et al.  DNA hybridization kinetics: zippering, internal displacement and sequence dependence , 2013, Nucleic acids research.

[154]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[155]  P. Derreumaux,et al.  Coarse-grained simulations of RNA and DNA duplexes. , 2013, The journal of physical chemistry. B.

[156]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[157]  Alexander Vologodskii,et al.  Strong bending of the DNA double helix , 2013, Nucleic acids research.

[158]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[159]  Darko Stefanovic,et al.  DNA Computing and Molecular Programming , 2012, Lecture Notes in Computer Science.

[160]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[161]  Hao Yan,et al.  Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. , 2014, Nature nanotechnology.

[162]  Daniel M. Hinckley,et al.  Coarse-grained modeling of DNA oligomer hybridization: length, sequence, and salt effects. , 2014, The Journal of chemical physics.

[163]  J. Elezgaray,et al.  Modelling the folding of DNA origami , 2011 .

[164]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[165]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[166]  Sergio Pantano,et al.  A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics. , 2010, Journal of chemical theory and computation.

[167]  Felicie F. Andersen,et al.  Assembly and structural analysis of a covalently closed nano-scale DNA cage , 2007, Nucleic acids research.

[168]  V. Tozzini,et al.  Supercoiling and local denaturation of plasmids with a minimalist DNA model. , 2008, The journal of physical chemistry. B.

[169]  Magdalena A. Jonikas,et al.  Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. , 2009, RNA.

[170]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[171]  F. Sciortino,et al.  Accurate phase diagram of tetravalent DNA nanostars , 2014, 1401.2837.

[172]  Damir Čemerin,et al.  IV , 2011 .

[173]  Luca Cardelli,et al.  A programming language for composable DNA circuits , 2009, Journal of The Royal Society Interface.

[174]  Juan J de Pablo,et al.  An experimentally-informed coarse-grained 3-Site-Per-Nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization. , 2013, The Journal of chemical physics.

[175]  P. Derreumaux,et al.  HiRE-RNA: a high resolution coarse-grained energy model for RNA. , 2010, The journal of physical chemistry. B.

[176]  A. Lyubartsev,et al.  A Coarse-Grained DNA Model Parameterized from Atomistic Simulations by Inverse Monte Carlo , 2014 .

[177]  Efthimios Kaxiras,et al.  Ab initio determination of coarse-grained interactions in double-stranded DNA. , 2012, The Journal of chemical physics.

[178]  M. Kenward,et al.  Brownian dynamics simulations of single-stranded DNA hairpins. , 2009, The Journal of chemical physics.

[179]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .

[180]  N. Becker,et al.  DNA nanomechanics: how proteins deform the double helix. , 2008, The Journal of chemical physics.

[181]  P. R. ten Wolde,et al.  Sampling rare switching events in biochemical networks. , 2004, Physical review letters.

[182]  Alexey Savelyev,et al.  Chemically accurate coarse graining of double-stranded DNA , 2010, Proceedings of the National Academy of Sciences.

[183]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[184]  Model for assembly and gelation of four-armed DNA dendrimers. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[185]  K. Drukker,et al.  Model simulations of DNA denaturation dynamics , 2001 .