An order-theoretic analysis of interpretations among propositional deductive systems

Abstract In this paper we study interpretations and equivalences of propositional deductive systems by using a quantale-theoretic approach introduced by Galatos and Tsinakis. Our aim is to provide a general order-theoretic framework which is able to describe and characterize both strong and weak forms of interpretations among propositional deductive systems also in the cases where the systems have different underlying languages.

[1]  K. I. Rosenthal Quantales and their applications , 1990 .

[2]  Alexej P. Pynko,et al.  Definitional Equivalence and Algebraizability of Generalized Logical Systems , 1999, Ann. Pure Appl. Log..

[3]  R. Wójcicki Theory of Logical Calculi: Basic Theory of Consequence Operations , 1988 .

[4]  Jan Paseka,et al.  A note on nuclei of quantale modules , 2002 .

[5]  Jan Łukasiewicz,et al.  On the principle of the excluded middle , 1987 .

[6]  Ciro Russo Quantale Modules and their Operators, with Applications , 2010, J. Log. Comput..

[7]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[8]  L. E. J. Brouwer,et al.  Over de Grondslagen der Wiskunde , 2009 .

[9]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[10]  Willem J. Blok,et al.  Equivalence of Consequence Operations , 2006, Stud Logica.

[11]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[12]  Till Mossakowski,et al.  What is a Logic Translation? , 2009, Logica Universalis.

[13]  Sergey A. Solovyov,et al.  On the category Q-Mod , 2008 .

[14]  E. B. Katsov Tensor product of functors , 1978 .

[15]  Francesco Paoli,et al.  Ordered Algebras and Logic , 2010 .

[16]  Bernhard Banaschewski,et al.  Tensor Products and Bimorphisms , 1976, Canadian Mathematical Bulletin.

[17]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[18]  Jan Paseka,et al.  Algebraic and Categorical Aspects of Quantales , 2008 .

[19]  Itala M. Loffredo D'Ottaviano,et al.  Conservative translations , 2001, Ann. Pure Appl. Log..

[20]  James G. Raftery,et al.  Correspondences between gentzen and hilbert systems , 2006, Journal of Symbolic Logic.

[21]  Nikolaos Galatos,et al.  Equivalence of consequence relations: an order-theoretic and categorical perspective , 2009, The Journal of Symbolic Logic.

[22]  Giorgie Dzhaparidze,et al.  A Generalized Notion of Weak Interpretability and the Corresponding Modal Logic , 1993, Ann. Pure Appl. Log..

[23]  Janusz Czelakowski Equivalential Logics (After 25 Years of Investigations) , 2004, Reports Math. Log..

[24]  J. D. Silva On the Principle of Excluded Middle , 2012 .

[25]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[26]  Ventura Verdú,et al.  On the Algebraization of Some Gentzen Systems , 1993, Fundam. Informaticae.

[27]  Ciro Russo,et al.  QUANTALE MODULES: WITH APPLICATIONS TO LOGIC AND IMAGE PROCESSING , 2009, 0909.4493.

[28]  J. Ferreirós From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .