Geometry of conditional independence

Geometry of conditional independence

[1]  Satyan L. Devadoss,et al.  Coxeter Complexes and Graph-Associahedra , 2004, math/0407229.

[2]  Bruna Tanaka Cremonini,et al.  Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.

[3]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[4]  Satoshi Aoki,et al.  Markov chain Monte Carlo exact tests for incomplete two-way contingency tables , 2005 .

[5]  M. Studený,et al.  Extreme Supermodular Set Functions Over Five Variables , 2000 .

[6]  Hongzhe Li,et al.  Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data , 2004, Bioinform..

[7]  Christophe Hohlweg,et al.  Realizations of the Associahedron and Cyclohedron , 2005, Discret. Comput. Geom..

[8]  Bernd Sturmfels,et al.  Duality and Minors of Secondary Polyhedra , 1993, J. Comb. Theory, Ser. B.

[9]  Lior Pachter,et al.  Convex Rank Tests and Semigraphoids , 2007, SIAM J. Discret. Math..

[10]  G. Brightwell,et al.  Counting linear extensions , 1991 .

[11]  Jacques Tits,et al.  Le problème des mots dans les groupes de Coxeter , 1969 .

[12]  S. Fomin,et al.  Y-systems and generalized associahedra , 2001, hep-th/0111053.

[13]  Simplex, associahedron, and cyclohedron , 1997, alg-geom/9707009.

[14]  Michael J. McDonald,et al.  Microarray Analysis and Organization of Circadian Gene Expression in Drosophila , 2001, Cell.

[15]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[16]  Lior Pachter,et al.  The Cyclohedron Test for Finding Periodic Genes in Time Course Expression Studies , 2007, Statistical applications in genetics and molecular biology.

[17]  Sebastian E. Ahnert,et al.  Unbiased pattern detection in microarray data series , 2006, Bioinform..

[18]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[19]  Jie Chen,et al.  Bioinformatics Original Paper Detecting Periodic Patterns in Unevenly Spaced Gene Expression Time Series Using Lomb–scargle Periodograms , 2022 .

[20]  Milan Studeny,et al.  Conditional independence relations have no finite complete characterization , 1992 .

[21]  F. Matús Probabilités conditionnelles et permutaèdre , 2003 .

[22]  Bernd Sturmfels,et al.  Polytopal and nonpolytopal spheres an algorithmic approach , 1987 .

[23]  F. Matús On equivalence of Markov properties over undirected graphs , 1992, Journal of Applied Probability.

[24]  Nirit Sandman A type-B Tamari poset , 2004, Discret. Appl. Math..

[25]  Jean-Paul Thiery,et al.  Identifying genes from up-down properties of microarray expression series , 2005, Bioinform..

[26]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[27]  D. Weinreich,et al.  The Rank Ordering of Genotypic Fitness Values Predicts Genetic Constraint on Natural Selection on Landscapes Lacking Sign Epistasis , 2005, Genetics.

[28]  Frantisek Matús,et al.  Conditional Independences among Four Random Variables II , 1995, Combinatorics, Probability and Computing.

[29]  Jie Chen,et al.  A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock , 2006, Science.

[30]  D. Murray,et al.  A genomewide oscillation in transcription gates DNA replication and cell cycle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[32]  Frantisek Matús,et al.  Towards classification of semigraphoids , 2004, Discret. Math..

[33]  Satoshi Aoki,et al.  Indispensable monomials of toric ideals and Markov bases , 2005, J. Symb. Comput..

[34]  C.J.H. Mann,et al.  Probabilistic Conditional Independence Structures , 2005 .

[35]  Lawrence M. Seiford,et al.  The Geometry of Rank-Order Tests , 1983 .

[36]  Michael I. Jordan Graphical Models , 2003 .

[37]  J. Brasselet Introduction to toric varieties , 2004 .

[38]  G. Ziegler Lectures on Polytopes , 1994 .

[39]  F. Matús Ascending And Descending Conditional Independence Relations , 1992 .

[40]  O. Pourquié The Segmentation Clock: Converting Embryonic Time into Spatial Pattern , 2003, Science.

[41]  Milan Studený,et al.  Conditional Independences among Four Random Variables I , 1995, Combinatorics, Probability and Computing.

[43]  Karen Willbrand,et al.  On arithmetic and asymptotic properties of up-down numbers , 2007, Discret. Math..

[44]  R. Koch COMPUTING THE INTEGRAL CLOSURE OF AN AFFINE SEMIGROUP , 2004 .

[45]  Jason Morton,et al.  Three Counterexamples on Semigraphoids , 2006 .

[46]  Seth Sullivant,et al.  The space of compatible full conditionals is a unimodular toric variety , 2006, J. Symb. Comput..

[47]  F. Mattt Conditional Probabilities and Permutahedron , 2022 .

[48]  John D. Storey,et al.  Significance analysis of time course microarray experiments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[50]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[51]  G. Ewald Combinatorial Convexity and Algebraic Geometry , 1996 .

[52]  Lior Pachter,et al.  Geometry of rank tests , 2006, Probabilistic Graphical Models.

[53]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[54]  D. Geiger,et al.  On the toric algebra of graphical models , 2006, math/0608054.

[55]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[56]  Earl F. Glynn,et al.  Comparison of Pattern Detection Methods in Microarray Time Series of the Segmentation Clock , 2008, PloS one.

[57]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[58]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[59]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[60]  E. Pitman Significance Tests Which May be Applied to Samples from Any Populations , 1937 .

[61]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[62]  B. Arnold,et al.  Conditional specification of statistical models , 1999 .

[63]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[64]  David A. Cox Toric Varieties and Toric Resolutions , 2000 .

[65]  Daniel L. Mace,et al.  A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.