Geometry of conditional independence
暂无分享,去创建一个
[1] Satyan L. Devadoss,et al. Coxeter Complexes and Graph-Associahedra , 2004, math/0407229.
[2] Bruna Tanaka Cremonini,et al. Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.
[3] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[4] Satoshi Aoki,et al. Markov chain Monte Carlo exact tests for incomplete two-way contingency tables , 2005 .
[5] M. Studený,et al. Extreme Supermodular Set Functions Over Five Variables , 2000 .
[6] Hongzhe Li,et al. Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data , 2004, Bioinform..
[7] Christophe Hohlweg,et al. Realizations of the Associahedron and Cyclohedron , 2005, Discret. Comput. Geom..
[8] Bernd Sturmfels,et al. Duality and Minors of Secondary Polyhedra , 1993, J. Comb. Theory, Ser. B.
[9] Lior Pachter,et al. Convex Rank Tests and Semigraphoids , 2007, SIAM J. Discret. Math..
[10] G. Brightwell,et al. Counting linear extensions , 1991 .
[11] Jacques Tits,et al. Le problème des mots dans les groupes de Coxeter , 1969 .
[12] S. Fomin,et al. Y-systems and generalized associahedra , 2001, hep-th/0111053.
[13] Simplex, associahedron, and cyclohedron , 1997, alg-geom/9707009.
[14] Michael J. McDonald,et al. Microarray Analysis and Organization of Circadian Gene Expression in Drosophila , 2001, Cell.
[15] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[16] Lior Pachter,et al. The Cyclohedron Test for Finding Periodic Genes in Time Course Expression Studies , 2007, Statistical applications in genetics and molecular biology.
[17] Sebastian E. Ahnert,et al. Unbiased pattern detection in microarray data series , 2006, Bioinform..
[18] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[19] Jie Chen,et al. Bioinformatics Original Paper Detecting Periodic Patterns in Unevenly Spaced Gene Expression Time Series Using Lomb–scargle Periodograms , 2022 .
[20] Milan Studeny,et al. Conditional independence relations have no finite complete characterization , 1992 .
[21] F. Matús. Probabilités conditionnelles et permutaèdre , 2003 .
[22] Bernd Sturmfels,et al. Polytopal and nonpolytopal spheres an algorithmic approach , 1987 .
[23] F. Matús. On equivalence of Markov properties over undirected graphs , 1992, Journal of Applied Probability.
[24] Nirit Sandman. A type-B Tamari poset , 2004, Discret. Appl. Math..
[25] Jean-Paul Thiery,et al. Identifying genes from up-down properties of microarray expression series , 2005, Bioinform..
[26] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[27] D. Weinreich,et al. The Rank Ordering of Genotypic Fitness Values Predicts Genetic Constraint on Natural Selection on Landscapes Lacking Sign Epistasis , 2005, Genetics.
[28] Frantisek Matús,et al. Conditional Independences among Four Random Variables II , 1995, Combinatorics, Probability and Computing.
[29] Jie Chen,et al. A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock , 2006, Science.
[30] D. Murray,et al. A genomewide oscillation in transcription gates DNA replication and cell cycle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[31] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[32] Frantisek Matús,et al. Towards classification of semigraphoids , 2004, Discret. Math..
[33] Satoshi Aoki,et al. Indispensable monomials of toric ideals and Markov bases , 2005, J. Symb. Comput..
[34] C.J.H. Mann,et al. Probabilistic Conditional Independence Structures , 2005 .
[35] Lawrence M. Seiford,et al. The Geometry of Rank-Order Tests , 1983 .
[36] Michael I. Jordan. Graphical Models , 2003 .
[37] J. Brasselet. Introduction to toric varieties , 2004 .
[38] G. Ziegler. Lectures on Polytopes , 1994 .
[39] F. Matús. Ascending And Descending Conditional Independence Relations , 1992 .
[40] O. Pourquié. The Segmentation Clock: Converting Embryonic Time into Spatial Pattern , 2003, Science.
[41] Milan Studený,et al. Conditional Independences among Four Random Variables I , 1995, Combinatorics, Probability and Computing.
[43] Karen Willbrand,et al. On arithmetic and asymptotic properties of up-down numbers , 2007, Discret. Math..
[44] R. Koch. COMPUTING THE INTEGRAL CLOSURE OF AN AFFINE SEMIGROUP , 2004 .
[45] Jason Morton,et al. Three Counterexamples on Semigraphoids , 2006 .
[46] Seth Sullivant,et al. The space of compatible full conditionals is a unimodular toric variety , 2006, J. Symb. Comput..
[47] F. Mattt. Conditional Probabilities and Permutahedron , 2022 .
[48] John D. Storey,et al. Significance analysis of time course microarray experiments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[49] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[50] Alexander Postnikov,et al. Permutohedra, Associahedra, and Beyond , 2005, math/0507163.
[51] G. Ewald. Combinatorial Convexity and Algebraic Geometry , 1996 .
[52] Lior Pachter,et al. Geometry of rank tests , 2006, Probabilistic Graphical Models.
[53] Bernd Sturmfels,et al. Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..
[54] D. Geiger,et al. On the toric algebra of graphical models , 2006, math/0608054.
[55] Michael Ruogu Zhang,et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.
[56] Earl F. Glynn,et al. Comparison of Pattern Detection Methods in Microarray Time Series of the Segmentation Clock , 2008, PloS one.
[57] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[58] A. Dawid. Conditional Independence in Statistical Theory , 1979 .
[59] Michael Joswig,et al. polymake: a Framework for Analyzing Convex Polytopes , 2000 .
[60] E. Pitman. Significance Tests Which May be Applied to Samples from Any Populations , 1937 .
[61] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[62] B. Arnold,et al. Conditional specification of statistical models , 1999 .
[63] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[64] David A. Cox. Toric Varieties and Toric Resolutions , 2000 .
[65] Daniel L. Mace,et al. A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.