Potential energy representations in the bond order space

Abstract Different types of reaction channel coordinates defined in the bond order space are formulated. Their use for describing the interaction of reactive processes is also discussed.

[1]  Harold S. Johnston,et al.  Activation Energies from Bond Energies. I. Hydrogen Transfer Reactions , 1963 .

[2]  Linus Pauling,et al.  Atomic Radii and Interatomic Distances in Metals , 1947 .

[3]  S. Sato,et al.  Potential Energy Surface of the System of Three Atoms , 1955 .

[4]  J. Manz,et al.  The F + H2 (v = 0) →FH (v′ ⩽ 3>) + H reaction: Quantum collinear reaction probabilities on three different potential energy surfaces , 1978 .

[5]  G. Schatz,et al.  Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH , 1980 .

[6]  P. Kuntz Use of the method of diatomics-in-molecules in fitting ab initio potential surfaces:the system HeH + 2 , 1972 .

[7]  J. Murrell Analytical Functions for the Potential Energy Surfaces of Small Polyatomic Molecules , 1980 .

[8]  J. Polanyi,et al.  Distribution of reaction products (theory). VII. D+ + H2 → DH + H+ using an ab initio potential-energy surface , 1969 .

[9]  Ernesto Garcia,et al.  A vectorizable potential energy functional for reactive scattering , 1987 .

[10]  Rudolph A. Marcus,et al.  Theoretical relations among rate constants, barriers, and Broensted slopes of chemical reactions , 1968 .

[11]  J. Connor Reactive molecular collision calculations , 1979 .

[12]  R. Levine,et al.  Empirical triatomic potential energy surfaces defined over orthogonal bond order coordinates , 1979 .

[13]  J. Light,et al.  Hermitian quantum equations for scattering in reaction coordinates , 1976 .

[14]  J. Bowman,et al.  A semi-numerical approach to the construction and fitting of triatomic potential energy surfaces , 1975 .

[15]  S. Sato,et al.  On a New Method of Drawing the Potential Energy Surface , 1955 .

[16]  Jörn Manz,et al.  The relation of chemical potentials and reactivity studied by a state path sum , 1975 .

[17]  A. Varandas Double many-body expansion of molecular potential energy functions and the role of long-range forces in the rates of chemical reactions , 1988 .

[18]  F. T. Wall,et al.  Sensitivity of Exchange‐Reaction Probabilities to the Potential‐Energy Surface , 1963 .

[19]  Antonio Laganà,et al.  A rotating bond order formulation of the atom diatom potential energy surface , 1991 .

[20]  Jörn Manz,et al.  Exact quantum transition probabilities by the state path sum method: Collinear F + H2 reaction , 1975 .

[21]  M. Paniagua,et al.  A new functional form to obtain analytical potentials of triatomic molecules , 1992 .

[22]  Mark S. Gordon,et al.  Potential energy surfaces for polyatomic reaction dynamics , 1987 .