Analyzing the capabilities of the HB logit model for choice-based conjoint analysis: a simulation study

The authors conduct an extensive simulation study to examine the capabilities of the Hierarchical Bayes (HB) logit model for choice-based conjoint (CBC) studies. The statistical performance of HB is evaluated under experimentally varying factor level settings using criteria for goodness-of-fit, parameter recovery and predictive accuracy. The results provide guidance to market researchers who are confronted with the problem that clients desire to include more and more attributes while keeping the choice task manageable. The results show that for simple CBC settings HB estimation proves to be quite robust. One of the main findings for simple CBC settings is that holding other factors at convenient levels far more attributes than previously suggested can be used in CBC studies. Further, sample size and/or the number of choice tasks per respondent can be noticeably reduced. However, for more complex CBC settings with an already high number of parameters (part-worths) but rather little information available from respondents, the HB model is starting to collapse if more than one of those factors (attributes, sample size, choice tasks) is set to an extreme level.

[1]  R. Dhar Consumer Preference for a No-Choice Option , 1997 .

[2]  Jordan J. Louviere,et al.  Latent variables in discrete choice experiments , 2012 .

[3]  James F. Thrasher,et al.  Assessing Smoking Cessation Messages with a Discrete Choice Experiment. , 2018, Tobacco regulatory science.

[4]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[5]  Dwayne A. Ball,et al.  The ability of ratings and choice conjoint to predict market shares: a Monte Carlo simulation , 2002 .

[6]  Greg M. Allenby,et al.  Using Extremes to Design Products and Segment Markets , 1995 .

[7]  John R. Hauser,et al.  Conjoint Analysis, Related Modeling, and Applications , 2004 .

[8]  Rick L. Andrews,et al.  An Empirical Comparison of Logit Choice Models with Discrete versus Continuous Representations of Heterogeneity , 2002 .

[9]  Mark S. Roulston,et al.  Performance targets and the Brier score , 2007 .

[10]  Greg M. Allenby,et al.  Incorporating Prior Knowledge into the Analysis of Conjoint Studies , 1995 .

[11]  Jordan J. Louviere,et al.  Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data , 1983 .

[12]  R. Wilken,et al.  Predicting Purchase Decisions with Different Conjoint Analysis Methods: A Monte Carlo Simulation , 2007 .

[13]  K. Train Discrete Choice Methods with Simulation , 2003 .

[14]  Naresh K. Malhotra,et al.  Improving Predictive Power of Conjoint Analysis by Constrained Parameter Estimation , 1983 .

[15]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[16]  Kommerzielle Anwendung auswahlbasierter Verfahren der Conjointanalyse: Eine empirische Untersuchung zur Validitätsentwicklung , 2014 .

[17]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[18]  Vithala R. Rao,et al.  Applied Conjoint Analysis , 2014 .

[19]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[20]  P. Lenk,et al.  Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs , 1996 .

[21]  Jordan J. Louviere,et al.  Modeling the choices of individual decision-makers by combining efficient choice experiment designs with extra preference information , 2008 .

[22]  Thomas Kneib,et al.  Semiparametric multinomial logit models for analysing consumer choice behaviour , 2007 .

[23]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[24]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[25]  Dick R. Wittink,et al.  The effect of differences in the number of attribute levels on conjoint results , 1990 .

[26]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing: Rossi/Bayesian Statistics and Marketing , 2006 .

[27]  Peter E. Rossi,et al.  A Bayesian Approach to Estimating Household Parameters , 1993 .

[28]  Jordan J. Louviere,et al.  An exploratory analysis of the effect of numbers of choice sets in designed choice experiments: an airline choice application , 2001 .

[29]  Michel Wedel,et al.  Conjoint Choice Experiments: General Characteristics and Alternative Model Specifications , 2007 .

[30]  Peter J. Lenk,et al.  The Value of Informative Priors in Bayesian Inference with Sparse Data , 2009 .

[31]  Sebastian Selka,et al.  The Validity of Conjoint Analysis: An Investigation of Commercial Studies Over Time , 2012, GfKl.

[32]  J. Hair Multivariate data analysis , 1972 .

[33]  Charles B. Weinberg,et al.  Design of Subscription Programs for a Performing Arts Series , 1981 .

[34]  Rick L. Andrews,et al.  Hierarchical Bayes versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction, and Partworth Recovery , 2002 .

[35]  M. Wedel,et al.  Metric Conjoint Segmentation Methods: A Monte Carlo Comparison , 1996 .

[36]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[37]  Richard T. Carson,et al.  Sequential preference questions factors influencing completion rates and response times using an online panel , 2013 .

[38]  Dick R. Wittink,et al.  Comparing Derived Importance Weights Across Attributes , 1982 .