Observational constraints on successful model of quintessential Inflation

We study quintessential inflation using a generalized exponential potential V(ϕ)∝ exp (−λ ϕn/MPln), n>1, the model admits slow-roll inflation at early times and leads to close-to-scaling behaviour in the post inflationary era with an exit to dark energy at late times. We present detailed investigations of the inflationary stage in the light of the Planck 2015 results, study post-inflationary dynamics and analytically confirm the existence of an approximately scaling solution. Additionally, assuming that standard massive neutrinos are non-minimally coupled, makes the field ϕ dominant once again at late times giving rise to present accelerated expansion of the Universe. We derive observational constraints on the field and time-dependent neutrino masses. In particular, for n=6 (8), the parameter λ is constrained to be, log λ > −7.29 (−11.7); the model produces the spectral index of the power spectrum of primordial scalar (matter density) perturbations as ns = 0.959 ± 0.001 (0.961 ± 0.001) and tiny tensor-to-scalar ratio, r<1.72 × 10−2 (2.32 × 10−2) respectively. Consequently, the upper bound on possible values of the sum of neutrino masses Σ mν ≲ 2.5 eV significantly enhances compared to that in the standard ΛCDM model.

[1]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[2]  Bernat Plandolit López Particle creation in expanding universes , 2017 .

[3]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[4]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[5]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[6]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[7]  M. Baldi,et al.  Nonlinear growing neutrino cosmology , 2014, 1407.8414.

[8]  E. Saridakis,et al.  Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results , 2015, 1502.03597.

[9]  E. Saridakis,et al.  Unification of inflation and dark energy à la quintessential inflation , 2014, 1410.6100.

[10]  Kyiv,et al.  A new determination of the primordial He abundance using the He i λ10830 Å emission line: cosmological implications , 2014, 1408.6953.

[11]  E. Saridakis,et al.  Class of quintessential inflation models with parameter space consistent with BICEP2 , 2014, 1404.1445.

[12]  E. Saridakis,et al.  Variable gravity: A suitable framework for quintessential inflation , 2014, 1402.6661.

[13]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .

[14]  J. Yokoyama,et al.  Cosmology based on f(R) gravity admits 1 eV sterile neutrinos. , 2012, Physical review letters.

[15]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[16]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[17]  L. Amendola,et al.  Neutrino lumps and the cosmic microwave background , 2010, 1009.2461.

[18]  L. Amendola,et al.  Quintessence cosmologies with a growing matter component , 2008 .

[19]  V. Pettorino,et al.  Neutrino clustering in growing neutrino quintessence , 2008, 0802.1515.

[20]  C.Wetterich Growing neutrinos and cosmological selection , 2007, 0706.4427.

[21]  A. Starobinsky,et al.  RECONSTRUCTING DARK ENERGY , 2006, astro-ph/0610026.

[22]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[23]  D. Mota,et al.  Cosmology of mass-varying neutrinos driven by quintessence: Theory and observations , 2005, astro-ph/0512367.

[24]  R. Ellis,et al.  The Supernova Legacy Survey: measurement of Ωm, Ω∧ and w from the first year data set. Commentary , 2006 .

[25]  J. Frieman,et al.  A simple model for quintessential inflation , 2005, astro-ph/0504191.

[26]  S. Tsujikawa,et al.  Coupled dark energy: towards a general description of the dynamics , 2005, hep-th/0502191.

[27]  D. Lyth,et al.  Hilltop inflation , 2005, hep-ph/0502047.

[28]  Cosmological evolution of interacting dark energy models with mass varying neutrinos , 2004, hep-ph/0412002.

[29]  Neutrino models of dark energy , 2004, hep-ph/0411137.

[30]  H. Pas,et al.  COSMO MSW EFFECT FOR MASS VARYING NEUTRINOS , 2003, astro-ph/0311131.

[31]  N. Dadhich,et al.  Unifying Brane World Inflation with Quintessence , 2004, hep-th/0405016.

[32]  V. Sahni,et al.  Quintessential inflation on the brane and the relic gravity wave background , 2004, hep-th/0402086.

[33]  Peihong Gu,et al.  Thermal leptogenesis in a model with mass varying neutrinos , 2003, hep-ph/0311022.

[34]  A. Nelson,et al.  Dark energy from mass varying neutrinos , 2003, astro-ph/0309800.

[35]  M. Giovannini Low-scale quintessential inflation , 2003, hep-ph/0301264.

[36]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[37]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[38]  T. Qureshi,et al.  Aspects of Tachyonic inflation with exponential potential , 2002, hep-th/0205179.

[39]  J. Valle,et al.  Modeling quintessential inflation. , 2001, astro-ph/0111417.

[40]  Relic gravity waves from braneworld inflation , 2001, gr-qc/0105121.

[41]  A. S. Majumdar,et al.  From brane assisted inflation to quintessence through a single scalar field , 2001, astro-ph/0105518.

[42]  A. Melchiorri,et al.  Early-universe constraints on a Primordial Scaling Field , 2001, astro-ph/0104162.

[43]  A. Liddle,et al.  Steep inflation: ending braneworld inflation by gravitational particle production , 2000, astro-ph/0006421.

[44]  K. Dimopoulos Towards a model of quintessential inflation , 2000, astro-ph/0012298.

[45]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[46]  M. Peloso,et al.  On the construction of quintessential inflation models , 1999, hep-ph/9908271.

[47]  L. Amendola Coupled Quintessence , 1999, astro-ph/9908023.

[48]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[49]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[50]  M. Giovannini Spikes in the relic graviton background from quintessential inflation , 1999, hep-ph/9903263.

[51]  P. Steinhardt,et al.  Cosmological tracking solutions , 1998, astro-ph/9812313.

[52]  L. Kofman,et al.  Instant Preheating , 1998, hep-ph/9812289.

[53]  P. Peebles,et al.  Quintessential inflation , 1998, astro-ph/9810509.

[54]  T. Prokopec,et al.  Turning around the sphaleron bound: Electroweak baryogenesis in an alternative post-inflationary cosmology , 1997, hep-ph/9709320.

[55]  Andrei Linde,et al.  Towards the theory of reheating after inflation , 1997 .

[56]  Reheating after inflation. , 1994, Physical review letters.

[57]  B. Spokoiny Deflationary Universe scenario , 1993, gr-qc/9306008.

[58]  T. Souradeep,et al.  Density perturbations, gravity waves and the cosmic microwave background , 1992, hep-ph/9208217.

[59]  Ratra Inflation in an exponential-potential scalar field model. , 1992, Physical review. D, Particles and fields.

[60]  Sahni,et al.  Energy density of relic gravity waves from inflation. , 1990, Physical review. D, Particles and fields.

[61]  Ford Gravitational particle creation and inflation. , 1987, Physical review. D, Particles and fields.

[62]  S. Matarrese,et al.  Power-law inflation. , 1985, Physical review. D, Particles and fields.

[63]  L. Abbott,et al.  Particle production in the new inflationary cosmology , 1982 .

[64]  Andrei Linde,et al.  Baryon asymmetry in the inflationary universe , 1982 .

[65]  F. Wilczek,et al.  Reheating an inflationary universe , 1982 .

[66]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[67]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[68]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[69]  A. Starobinsky Spectrum of relict gravitational radiation and the early state of the universe , 1979 .

[70]  Y. Zel’dovich,et al.  Rate of particle production in gravitational fields , 1977 .

[71]  L. Grishchuk,et al.  Amplification of gravitational waves in an isotropic universe , 1974 .

[72]  Y. Zel’dovich,et al.  PARTICLE PRODUCTION AND VACUUM POLARIZATION IN AN ANISOTROPIC GRAVITATIONAL FIELD. , 1971 .