In vitro and in vivo antitrypanosomal activities of three peptide antibiotics: leucinostatin A and B, alamethicin I and tsushimycin

[1]  S. Ōmura,et al.  Selective and Potent in Vitro Antitrypanosomal Activities of Ten Microbial Metabolites , 2008, The Journal of Antibiotics.

[2]  G. Woodley Channel‐Forming Activity of Alamethicin: Effects of Covalent Tethering , 2007 .

[3]  C. Vágvölgyi,et al.  The History of Alamethicin: A Review of the Most Extensively Studied Peptaibol , 2007, Chemistry & biodiversity.

[4]  A. Chorny,et al.  VIP: An Agent with License to Kill Infective Parasites , 2006, Annals of the New York Academy of Sciences.

[5]  N. Williams,et al.  ATP Synthase Is Responsible for Maintaining Mitochondrial Membrane Potential in Bloodstream Form Trypanosoma brucei , 2006, Eukaryotic Cell.

[6]  G. Sheldrick,et al.  Structure of the lipopeptide antibiotic tsushimycin. , 2005, Acta crystallographica. Section D, Biological crystallography.

[7]  Peter Rohloff,et al.  Acidocalcisomes ? conserved from bacteria to man , 2005, Nature Reviews Microbiology.

[8]  L. Perioli,et al.  Leucinostatin-A loaded nanospheres: characterization and in vivo toxicity and efficacy evaluation. , 2004, International journal of pharmaceutics.

[9]  K. Sivasithamparam,et al.  Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson , 2004, Letters in applied microbiology.

[10]  K. Kita,et al.  Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle. , 2003, Current medicinal chemistry.

[11]  A. Fairlamb Chemotherapy of human African trypanosomiasis: current and future prospects. , 2003, Trends in parasitology.

[12]  R. Hancock,et al.  The relationship between peptide structure and antibacterial activity , 2003, Peptides.

[13]  R. Docampo,et al.  Calcium regulation in protozoan parasites. , 2003, Current opinion in microbiology.

[14]  B. McGwire,et al.  Killing of African trypanosomes by antimicrobial peptides. , 2003, The Journal of infectious diseases.

[15]  S. Ōmura,et al.  In vitro antimalarial activities of the microbial metabolites. , 2003, The Journal of antibiotics.

[16]  C. Burri,et al.  The phenomenon of treatment failures in Human African Trypanosomiasis , 2001, Tropical medicine & international health : TM & IH.

[17]  S. Ōmura,et al.  Potent antimalarial activities of polyether antibiotic, X-206. , 2001, The Journal of antibiotics.

[18]  R. Kaminsky,et al.  Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. , 2001, Microbes and infection.

[19]  H. Wenschuh,et al.  Proline at position 14 of alamethicin is essential for hemolytic activity, catecholamine secretion from chromaffin cells and enhanced metabolic activity in endothelial cells. , 1998, Biochimica et biophysica acta.

[20]  T. Sato,et al.  Novel blockade of cell surface expression of virus glycoproteins by leucinostatin A. , 1996, The Journal of antibiotics.

[21]  N. Haghighat,et al.  Calcium influx in Trypanosoma brucei can be induced by amphiphilic peptides and amines. , 1996, Molecular and biochemical parasitology.

[22]  P. Csermely,et al.  The nonapeptide leucinostatin A acts as a weak ionophore and as an immunosuppressant on T lymphocytes. , 1994, Biochimica et biophysica acta.

[23]  A. Hutchinson,et al.  Calcium homeostasis in Trypanosoma brucei. Identification of a pH-sensitive non-mitochondrial calcium pool. , 1991, The Journal of biological chemistry.

[24]  N. Williams,et al.  The mitochondrial ATP synthase of Trypanosoma brucei: developmental regulation through the life cycle. , 1991, Archives of biochemistry and biophysics.

[25]  A. Garcı́a,et al.  Alamethicin channel permeation by Ca2+, Mn2+ and Ni2+ in bovine chromaffin cells , 1991, FEBS letters.

[26]  R. Schwarz,et al.  Biosynthesis of glycosyl‐phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl‐phosphoryldolichol as the mannose donor. , 1990, The EMBO journal.

[27]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[28]  K. Fukushima,et al.  Dual inhibitory effects of the peptide antibiotics leucinostatins on oxidative phosphorylation in mitochondria. , 1990, Cell structure and function.

[29]  Y. Mikami,et al.  Leucinostatins, peptide mycotoxins produced by Paecilomyces lilacinus and their possible roles in fungal infection. , 1984, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[30]  M. Suzuki,et al.  Structure of leucinostatin B, an uncoupler on mitochondria. , 1983, The Journal of antibiotics.

[31]  M. Suzuki,et al.  Studies on peptide antibiotics, leucinostatins. I. Separation, physico-chemical properties and biological activities of leucinostatins A and B. , 1983, The Journal of antibiotics.

[32]  M. Suzuki,et al.  Studies on peptide antibiotics, leucinostatins. II. The structures of leucinostatins A and B. , 1983, The Journal of antibiotics.

[33]  D. Bowles,et al.  Release of the surface coat from the plasma membrane of intact bloodstream forms of Trypanosoma brucei requires Ca2+ , 1982, FEBS letters.

[34]  A. Elbein The effect of tsushimycin on the synthesis of lipid-linked saccharides in aorta. , 1981, The Biochemical journal.

[35]  P. Balaram,et al.  Alamethicin and synthetic peptide fragments as uncouplers of mitochondrial oxidative phosphorylation. Effect of chain length and charge. , 1981, Biochemical and Biophysical Research Communications - BBRC.

[36]  R. C. Pandey,et al.  High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II , 1977 .

[37]  K. Ishiguro,et al.  Action of the Peptide Antibiotic Leucinostatin , 1976, Antimicrobial Agents and Chemotherapy.

[38]  C. H. Lin,et al.  Antibiotic inhibitors of mitochondrial ATP synthesis. , 1975, Federation proceedings.

[39]  H. Lardy,et al.  Uncoupling and specific inhibition of phosphoryl transfer reactions in mitochondria by antibiotic A20668. , 1975, The Journal of biological chemistry.

[40]  K. Yazawa,et al.  A new antibiotic, leucinostatin, derived from Penicillium lilacinum. , 1973, The Journal of antibiotics.

[41]  J. Shoji,et al.  Studies on tsushimycin. I. Isolation and characterization of an acidic acylpeptide containing a new fatty acid. , 1968, The Journal of antibiotics.

[42]  D. O. Rudin,et al.  Action Potentials induced in Biomolecular Lipid Membranes , 1968, Nature.

[43]  F. Reusser,et al.  A polypeptide antibacterial agent isolated fromTrichoderma viride , 1967, Experientia.

[44]  A. Packchanian Chemotherapy of African sleeping sickness. II. Chemotherapy of experimental Trypanosoma gambiense and Trypanosoma rhodesiense infections in mice (Mus musculus) with a new antibiotic, amphomycin. , 1956, Antibiotics & chemotherapy.

[45]  R. Hancock,et al.  Cationic antimicrobial peptide killing of African trypanosomes and Sodalis glossinidius, a bacterial symbiont of the insect vector of sleeping sickness. , 2003, Vector borne and zoonotic diseases.

[46]  D. Lamba,et al.  The crystal and molecular structure of the alpha-helical nonapeptide antibiotic leucinostatin A. , 1989, Biopolymers.

[47]  A. Taylor,et al.  The chemistry of peptides related to metabolites of Trichoderma spp. 2. an improved method of characterization of peptides of 2-methylalanine , 1986 .

[48]  G. Jung,et al.  [The hemolytic properties of the membrane modifying peptide antibiotics alamethicin, suzukacillin and trichotoxin (author's transl)]. , 1977, European journal of biochemistry.