Corrected-Hill versus partially reduced-bias value-at-risk estimation

Abstract The value-at-risk (VaR) at a small level q, , is the size of the loss that occurs with a probability q. Semi-parametric partially reduced-bias (PRB) VaR-estimation procedures based on the mean-of-order-p of a set of k quotients of upper order statistics, with p any real number, are put forward. After the study of their asymptotic behavior, these PRB VaR-estimators are altogether compared with the classical ones for finite samples, through a large-scale Monte-Carlo simulation study. A brief application to financial log-returns is provided, as well as some final remarks.

[1]  M. Ivette Gomes,et al.  Mean-of-order p reduced-bias extreme value index estimation under a third-order framework , 2016 .

[2]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[3]  M. Ivette Gomes,et al.  A Mean-of-Order-\(p\) Class of Value-at-Risk Estimators , 2015 .

[4]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[5]  Statistics of heteroscedastic extremes , 2016 .

[6]  D. Dey,et al.  Univariate Extreme Value Analysis , 2016 .

[7]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[8]  V. Paulauskas,et al.  A class of new tail index estimators , 2017 .

[9]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[10]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[11]  M. Gomes,et al.  Modeling Extreme Events: Sample Fraction Adaptive Choice in Parameter Estimation , 2012 .

[12]  Frederico Caeiro,et al.  A Partially Reduced Bias Class of Value-at-Risk Estimators , 2015 .

[13]  M. Gomes,et al.  Adaptive Reduced-Bias Tail Index and VaR Estimation via the Bootstrap Methodology , 2011 .

[14]  M. Gomes,et al.  AN OVERVIEW AND OPEN RESEARCH TOPICS IN STATISTICS OF UNIVARIATE EXTREMES , 2012 .

[15]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[16]  Fernanda Figueiredo,et al.  Adaptive estimation of heavy right tails: resampling-based methods in action , 2012 .

[17]  Frederico Caeiro,et al.  Efficiency of partially reduced-bias mean-of-order-p versus minimum-variance reduced-bias extreme value index estimation , 2014 .

[18]  M. Ivette Gomes,et al.  Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .

[19]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[20]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[21]  Fernanda Figueiredo,et al.  Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .

[22]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[23]  Holger Drees,et al.  On Smooth Statistical Tail Functionals , 1998 .

[24]  Laurens de Haan,et al.  Slow Variation and Characterization of Domains of Attraction , 1984 .

[25]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[26]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[27]  Jan Beran,et al.  The harmonic moment tail index estimator: asymptotic distribution and robustness , 2014 .

[28]  Holger Drees,et al.  Extreme quantile estimation for dependent data with applications to finance , 2003 .

[29]  B. G. Manjunath,et al.  Bootstrap Methods in Statistics of Extremes , 2016 .

[30]  M. Ivette Gomes,et al.  Semi-parametric second-order reduced-bias high quantile estimation , 2009 .

[31]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[32]  H. Drees Tail Empirical Processes Under Mixing Conditions , 2002 .

[33]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[34]  M. Ivette Gomes,et al.  New Reduced-bias Estimators of a Positive Extreme Value Index , 2016, Commun. Stat. Simul. Comput..

[35]  M. Ivette Gomes,et al.  Threshold Selection in Extreme Value Analysis , 2016 .

[36]  M. Ivette Gomes,et al.  A simple generalisation of the Hill estimator , 2013, Comput. Stat. Data Anal..

[37]  M. Ivette Gomes,et al.  A new partially reduced-bias mean-of-order p class of extreme value index estimators , 2015, Comput. Stat. Data Anal..

[38]  M. Gomes,et al.  Resampling Methodologies and Reliable Tail Estimation , 2015 .

[39]  V. Paulauskas,et al.  On an improvement of Hill and some other estimators , 2013 .

[40]  M. Ivette Gomes,et al.  Extreme Value Theory and Statistics of Univariate Extremes: A Review , 2015 .

[41]  M. Ivette Gomes,et al.  Mixed moment estimator and location invariant alternatives , 2009 .

[42]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[43]  M. Meerschaert Regular Variation in R k , 1988 .

[44]  Thomas Mikosch,et al.  Regularly varying functions , 2006 .