Corrected-Hill versus partially reduced-bias value-at-risk estimation
暂无分享,去创建一个
M. Ivette Gomes | Dinis Pestana | Frederico Caeiro | Fernanda Figueiredo | Lígia Henriques-Rodrigues | Frederico Caeiro | M. Gomes | D. Pestana | L. Henriques-Rodrigues | Fernanda Figueiredo | L. Henriques‐Rodrigues
[1] M. Ivette Gomes,et al. Mean-of-order p reduced-bias extreme value index estimation under a third-order framework , 2016 .
[2] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[3] M. Ivette Gomes,et al. A Mean-of-Order-\(p\) Class of Value-at-Risk Estimators , 2015 .
[4] A. McNeil,et al. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .
[5] Statistics of heteroscedastic extremes , 2016 .
[6] D. Dey,et al. Univariate Extreme Value Analysis , 2016 .
[7] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[8] V. Paulauskas,et al. A class of new tail index estimators , 2017 .
[9] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[10] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[11] M. Gomes,et al. Modeling Extreme Events: Sample Fraction Adaptive Choice in Parameter Estimation , 2012 .
[12] Frederico Caeiro,et al. A Partially Reduced Bias Class of Value-at-Risk Estimators , 2015 .
[13] M. Gomes,et al. Adaptive Reduced-Bias Tail Index and VaR Estimation via the Bootstrap Methodology , 2011 .
[14] M. Gomes,et al. AN OVERVIEW AND OPEN RESEARCH TOPICS IN STATISTICS OF UNIVARIATE EXTREMES , 2012 .
[15] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[16] Fernanda Figueiredo,et al. Adaptive estimation of heavy right tails: resampling-based methods in action , 2012 .
[17] Frederico Caeiro,et al. Efficiency of partially reduced-bias mean-of-order-p versus minimum-variance reduced-bias extreme value index estimation , 2014 .
[18] M. Ivette Gomes,et al. Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .
[19] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[20] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[21] Fernanda Figueiredo,et al. Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .
[22] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[23] Holger Drees,et al. On Smooth Statistical Tail Functionals , 1998 .
[24] Laurens de Haan,et al. Slow Variation and Characterization of Domains of Attraction , 1984 .
[25] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[26] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[27] Jan Beran,et al. The harmonic moment tail index estimator: asymptotic distribution and robustness , 2014 .
[28] Holger Drees,et al. Extreme quantile estimation for dependent data with applications to finance , 2003 .
[29] B. G. Manjunath,et al. Bootstrap Methods in Statistics of Extremes , 2016 .
[30] M. Ivette Gomes,et al. Semi-parametric second-order reduced-bias high quantile estimation , 2009 .
[31] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[32] H. Drees. Tail Empirical Processes Under Mixing Conditions , 2002 .
[33] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[34] M. Ivette Gomes,et al. New Reduced-bias Estimators of a Positive Extreme Value Index , 2016, Commun. Stat. Simul. Comput..
[35] M. Ivette Gomes,et al. Threshold Selection in Extreme Value Analysis , 2016 .
[36] M. Ivette Gomes,et al. A simple generalisation of the Hill estimator , 2013, Comput. Stat. Data Anal..
[37] M. Ivette Gomes,et al. A new partially reduced-bias mean-of-order p class of extreme value index estimators , 2015, Comput. Stat. Data Anal..
[38] M. Gomes,et al. Resampling Methodologies and Reliable Tail Estimation , 2015 .
[39] V. Paulauskas,et al. On an improvement of Hill and some other estimators , 2013 .
[40] M. Ivette Gomes,et al. Extreme Value Theory and Statistics of Univariate Extremes: A Review , 2015 .
[41] M. Ivette Gomes,et al. Mixed moment estimator and location invariant alternatives , 2009 .
[42] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[43] M. Meerschaert. Regular Variation in R k , 1988 .
[44] Thomas Mikosch,et al. Regularly varying functions , 2006 .