A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting
暂无分享,去创建一个
[1] CHIN-YUAN LIN,et al. ftp ejde.math.txstate.edu (login: ftp) NONLINEAR EVOLUTION EQUATIONS , 2022 .
[2] Abdul-Qayyum M. Khaliq,et al. Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..
[3] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[4] J. Martín-Vaquero,et al. SERK2v3: Solving mildly stiff nonlinear partial differential equations , 2016, J. Comput. Appl. Math..
[5] Yong-Tao Zhang,et al. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods , 2011, J. Comput. Phys..
[6] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[7] Bruce A. Wade,et al. An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .
[8] E. Villaseñor. Introduction to Quantum Mechanics , 2008, Nature.
[9] Johannes Müller,et al. Methods and Models in Mathematical Biology: Deterministic and Stochastic Approaches , 2015 .
[10] Andreas Kleefeld,et al. ESERK5: A fifth-order extrapolated stabilized explicit Runge-Kutta method , 2019, J. Comput. Appl. Math..
[11] L. Shampine,et al. RKC: an explicit solver for parabolic PDEs , 1998 .
[12] Y. Cherruault,et al. Stability and asymptotic behavior of a numerical solution corresponding to a diffusion-reaction equation solved by a finite difference scheme (Crank-Nicolson) , 1990 .
[13] B. Kleefeld,et al. Solving complex PDE systems for pricing American options with regime‐switching by efficient exponential time differencing schemes , 2013 .
[14] B. Minchev,et al. A review of exponential integrators for first order semi-linear problems , 2005 .
[15] Athanassios G. Bratsos,et al. A conservative exponential time differencing method for the nonlinear cubic Schrödinger equation , 2017, Int. J. Comput. Math..
[16] C. Loan. The ubiquitous Kronecker product , 2000 .
[17] Qiang Du,et al. Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications , 2005 .
[20] P. Zegeling,et al. Adaptive moving mesh computations for reaction--diffusion systems , 2004 .
[21] A. Khaliq,et al. Parallel LOD methods for second order time dependent PDEs , 1995 .
[22] Lei Zhang,et al. Array-representation integration factor method for high-dimensional systems , 2014, J. Comput. Phys..
[23] S. SIAMJ.,et al. FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .
[24] Lawrence F. Shampine,et al. IRKC: an IMEX solver for stiff diffusion-reaction PDEs , 2005 .
[25] Erwin Schrödinger,et al. Quantisierung als Eigenwertproblem , 1925 .
[26] J. Martín-Vaquero,et al. SERK2v2: A new second‐order stabilized explicit Runge‐Kutta method for stiff problems , 2013 .
[27] Jonathan A. Sherratt,et al. Models of epidermal wound healing , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[28] Aly-Khan Kassam. Solving reaction-diffusion equations 10 times faster , 2003 .
[29] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[30] Shigeru Kondo,et al. Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.
[31] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[32] Abdul-Qayyum M. Khaliq,et al. The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems , 2015, J. Comput. Appl. Math..
[33] Stephen O'Sullivan,et al. A class of high-order Runge-Kutta-Chebyshev stability polynomials , 2015, J. Comput. Phys..
[34] Samuel D. Conte,et al. Elementary Numerical Analysis: An Algorithmic Approach , 1975 .
[35] B. A. Wade,et al. On efficient numerical methods for an initial-boundary value problem with nonlocal boundary conditions , 2012 .
[36] Mayya Tokman,et al. Preconditioned implicit-exponential integrators (IMEXP) for stiff PDEs , 2017, J. Comput. Phys..
[37] Stephen O'Sullivan,et al. Runge-Kutta-Gegenbauer explicit methods for advection-diffusion problems , 2017, J. Comput. Phys..
[38] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .
[39] B. A. Wade,et al. High order smoothing schemes for inhomogeneous parabolic problems with applications in option pricing , 2007 .
[40] Charalambos Makridakis,et al. Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.
[41] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[42] Abdul-Qayyum M. Khaliq,et al. The numerical approximation of nonlinear Black–Scholes model for exotic path-dependent American options with transaction cost , 2012, Int. J. Comput. Math..
[43] Mayya Tokman,et al. A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) , 2011, J. Comput. Phys..
[44] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[45] Stefano Scali,et al. Introduction to quantum mechanics, 3rd edition , 2020 .
[46] K. Cheng. Theory of Superconductivity , 1948, Nature.
[47] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[48] Assyr Abdulle,et al. PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise , 2013, J. Comput. Phys..
[49] E. H. Twizell,et al. A second-order scheme for the “Brusselator” reaction–diffusion system , 1999 .
[50] Chert,et al. Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .
[51] Mehdi Dehghan,et al. The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .
[52] M. Yousuf,et al. Smoothing schemes for reaction-diffusion systems with nonsmooth data , 2009 .
[53] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[54] Dong Lu,et al. Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations , 2016, Journal of Scientific Computing.
[55] James D. Murray. Mathematical Biology: I. An Introduction , 2007 .
[56] E. Asante-Asamani. An Exponential Time Differencing Scheme with a Real Distinct Poles Rational Function for Advection-Diffusion-Reactions systems , 2016 .
[57] E. T. Gawlinski,et al. A reaction-diffusion model of cancer invasion. , 1996, Cancer research.
[58] Hannah Rittich,et al. Time-parallel simulation of the Schrödinger Equation , 2020, Comput. Phys. Commun..
[59] Abdul-Qayyum M. Khaliq,et al. A real distinct poles Exponential Time Differencing scheme for reaction-diffusion systems , 2016, J. Comput. Appl. Math..
[60] Su Zhao,et al. Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems , 2011, J. Comput. Phys..
[61] J. Martín-Vaquero,et al. Second-order stabilized explicit Runge-Kutta methods for stiff problems , 2009, Comput. Phys. Commun..
[62] M. Hochbruck,et al. Exponential Runge--Kutta methods for parabolic problems , 2005 .
[63] Ioannis G. Kevrekidis,et al. Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..
[64] Mingkui Chen. On the solution of circulant linear systems , 1987 .
[65] Steven J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .
[66] Abdul-Qayyum M. Khaliq,et al. Efficient Krylov-based exponential time differencing method in application to 3D advection-diffusion-reaction systems , 2018, Appl. Math. Comput..
[67] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[68] Assyr Abdulle,et al. Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.
[69] J. Martín-Vaquero,et al. Extrapolated stabilized explicit Runge-Kutta methods , 2016, J. Comput. Phys..