A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting

A second-order $L$-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques.

[1]  CHIN-YUAN LIN,et al.  ftp ejde.math.txstate.edu (login: ftp) NONLINEAR EVOLUTION EQUATIONS , 2022 .

[2]  Abdul-Qayyum M. Khaliq,et al.  Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..

[3]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[4]  J. Martín-Vaquero,et al.  SERK2v3: Solving mildly stiff nonlinear partial differential equations , 2016, J. Comput. Appl. Math..

[5]  Yong-Tao Zhang,et al.  Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods , 2011, J. Comput. Phys..

[6]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[7]  Bruce A. Wade,et al.  An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .

[8]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[9]  Johannes Müller,et al.  Methods and Models in Mathematical Biology: Deterministic and Stochastic Approaches , 2015 .

[10]  Andreas Kleefeld,et al.  ESERK5: A fifth-order extrapolated stabilized explicit Runge-Kutta method , 2019, J. Comput. Appl. Math..

[11]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[12]  Y. Cherruault,et al.  Stability and asymptotic behavior of a numerical solution corresponding to a diffusion-reaction equation solved by a finite difference scheme (Crank-Nicolson) , 1990 .

[13]  B. Kleefeld,et al.  Solving complex PDE systems for pricing American options with regime‐switching by efficient exponential time differencing schemes , 2013 .

[14]  B. Minchev,et al.  A review of exponential integrators for first order semi-linear problems , 2005 .

[15]  Athanassios G. Bratsos,et al.  A conservative exponential time differencing method for the nonlinear cubic Schrödinger equation , 2017, Int. J. Comput. Math..

[16]  C. Loan The ubiquitous Kronecker product , 2000 .

[17]  Qiang Du,et al.  Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications , 2005 .

[20]  P. Zegeling,et al.  Adaptive moving mesh computations for reaction--diffusion systems , 2004 .

[21]  A. Khaliq,et al.  Parallel LOD methods for second order time dependent PDEs , 1995 .

[22]  Lei Zhang,et al.  Array-representation integration factor method for high-dimensional systems , 2014, J. Comput. Phys..

[23]  S. SIAMJ.,et al.  FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .

[24]  Lawrence F. Shampine,et al.  IRKC: an IMEX solver for stiff diffusion-reaction PDEs , 2005 .

[25]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[26]  J. Martín-Vaquero,et al.  SERK2v2: A new second‐order stabilized explicit Runge‐Kutta method for stiff problems , 2013 .

[27]  Jonathan A. Sherratt,et al.  Models of epidermal wound healing , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  Aly-Khan Kassam Solving reaction-diffusion equations 10 times faster , 2003 .

[29]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[30]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[31]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[32]  Abdul-Qayyum M. Khaliq,et al.  The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems , 2015, J. Comput. Appl. Math..

[33]  Stephen O'Sullivan,et al.  A class of high-order Runge-Kutta-Chebyshev stability polynomials , 2015, J. Comput. Phys..

[34]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[35]  B. A. Wade,et al.  On efficient numerical methods for an initial-boundary value problem with nonlocal boundary conditions , 2012 .

[36]  Mayya Tokman,et al.  Preconditioned implicit-exponential integrators (IMEXP) for stiff PDEs , 2017, J. Comput. Phys..

[37]  Stephen O'Sullivan,et al.  Runge-Kutta-Gegenbauer explicit methods for advection-diffusion problems , 2017, J. Comput. Phys..

[38]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[39]  B. A. Wade,et al.  High order smoothing schemes for inhomogeneous parabolic problems with applications in option pricing , 2007 .

[40]  Charalambos Makridakis,et al.  Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Abdul-Qayyum M. Khaliq,et al.  The numerical approximation of nonlinear Black–Scholes model for exotic path-dependent American options with transaction cost , 2012, Int. J. Comput. Math..

[43]  Mayya Tokman,et al.  A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK) , 2011, J. Comput. Phys..

[44]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[45]  Stefano Scali,et al.  Introduction to quantum mechanics, 3rd edition , 2020 .

[46]  K. Cheng Theory of Superconductivity , 1948, Nature.

[47]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[48]  Assyr Abdulle,et al.  PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise , 2013, J. Comput. Phys..

[49]  E. H. Twizell,et al.  A second-order scheme for the “Brusselator” reaction–diffusion system , 1999 .

[50]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[51]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[52]  M. Yousuf,et al.  Smoothing schemes for reaction-diffusion systems with nonsmooth data , 2009 .

[53]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[54]  Dong Lu,et al.  Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations , 2016, Journal of Scientific Computing.

[55]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[56]  E. Asante-Asamani An Exponential Time Differencing Scheme with a Real Distinct Poles Rational Function for Advection-Diffusion-Reactions systems , 2016 .

[57]  E. T. Gawlinski,et al.  A reaction-diffusion model of cancer invasion. , 1996, Cancer research.

[58]  Hannah Rittich,et al.  Time-parallel simulation of the Schrödinger Equation , 2020, Comput. Phys. Commun..

[59]  Abdul-Qayyum M. Khaliq,et al.  A real distinct poles Exponential Time Differencing scheme for reaction-diffusion systems , 2016, J. Comput. Appl. Math..

[60]  Su Zhao,et al.  Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems , 2011, J. Comput. Phys..

[61]  J. Martín-Vaquero,et al.  Second-order stabilized explicit Runge-Kutta methods for stiff problems , 2009, Comput. Phys. Commun..

[62]  M. Hochbruck,et al.  Exponential Runge--Kutta methods for parabolic problems , 2005 .

[63]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[64]  Mingkui Chen On the solution of circulant linear systems , 1987 .

[65]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[66]  Abdul-Qayyum M. Khaliq,et al.  Efficient Krylov-based exponential time differencing method in application to 3D advection-diffusion-reaction systems , 2018, Appl. Math. Comput..

[67]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[68]  Assyr Abdulle,et al.  Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.

[69]  J. Martín-Vaquero,et al.  Extrapolated stabilized explicit Runge-Kutta methods , 2016, J. Comput. Phys..