Sélection adaptative de caractéristiques pertinentes et classification hiérarchique des images dans les bases hétérogènes

RÉSUMÉ. Dans les bases hétérogènes, les images appartiennent souvent à différentes classes thématiques et nécessitent une large description permettant leur reconnaissance. Cependant, les caractéristiques utilisées ne sont pas toujours adaptées au contenu de la base d’images considérée. Nous proposons dans cet article une nouvelle approche se basant sur deux originalités, à savoir la sélection adaptative de caractéristiques et la classification multimodèle intitulée MC-MM. La sélection adaptative permet de ne considérer que les caractéristiques les mieux adaptées au contenu de la base d’images utilisée. La méthode MCMM assure la reconnaissance des images en se servant hiérarchiquement des caractéristiques sélectionnées. Les résultats expérimentaux obtenus confirment l’efficacité et la robustesse de notre approche. ABSTRACT. In heterogeneous databases, images often provided from different sources and belong to different topics, hence there is a need for a large description to ensure efficient representation of their content. However, extracted features are not always adapted to the considered image database. In this paper we propose a new image recognition approach based on two innovations, namely adaptive feature selection and Multi-Model Classification Method (MC-MM). The adaptive selection considers only the most adapted features with the used image database content. The MC-MM method ensures image recognition using hierarchically selected features. Experimental results confirm the effectiveness and the robustness of our proposed approach. MOTS-CLÉS : extraction d’attributs, sélection adaptative des caractéristiques pertinentes, classification multi-modèle, reconnaissance d’images, bases hétérogènes.

[1]  Nozha Boujemaa,et al.  Region Queries without Segmentation for Image Retrieval by Content , 1999, VISUAL.

[2]  Robert Tibshirani,et al.  1-norm Support Vector Machines , 2003, NIPS.

[3]  Johan Montagnat,et al.  Shape and Topology Constraints on Parametric Active Contours , 2001, Comput. Vis. Image Underst..

[4]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[5]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[6]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[7]  Antoine Geissbühler,et al.  A Review of Content{Based Image Retrieval Systems in Medical Applications { Clinical Bene(cid:12)ts and Future Directions , 2022 .

[8]  Frédéric Truchetet,et al.  Image retrieval with binary hamming distance , 2007, VISAPP.

[9]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[10]  ZhangYan,et al.  On the Euclidean Distance of Images , 2005 .

[11]  Jing Huang,et al.  Spatial Color Indexing and Applications , 2004, International Journal of Computer Vision.

[12]  Myron Flickner,et al.  Query by Image and Video Content , 1995 .

[13]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[14]  M. Teague Image analysis via the general theory of moments , 1980 .

[15]  Yixin Chen,et al.  Image Categorization by Learning and Reasoning with Regions , 2004, J. Mach. Learn. Res..

[16]  Roded Sharan,et al.  Algorithmic approaches to clustering gene expression data , 2001 .

[17]  Konstantinos N. Plataniotis,et al.  Aggregation of color and shape features for hybrid query generation in content based visual information retrieval , 2005, Signal Process..

[18]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[19]  Arnold W. M. Smeulders,et al.  The PicToSeek WWW image search system , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[20]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[21]  A. Del Bimbo,et al.  Using weighted spatial relationships in retrieval by visual contents , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[22]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[23]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[24]  James Ze Wang,et al.  Studying Aesthetics in Photographic Images Using a Computational Approach , 2006, ECCV.

[25]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[26]  T. Martin McGinnity,et al.  Fault diagnosis of electronic systems using intelligent techniques: a review , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[27]  Amarnath Gupta,et al.  Virage image search engine: an open framework for image management , 1996, Electronic Imaging.

[28]  Jinbo Bi,et al.  Dimensionality Reduction via Sparse Support Vector Machines , 2003, J. Mach. Learn. Res..

[29]  Tao Wang,et al.  A hierarchical characterization scheme for image retrieval , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[30]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[31]  Lixin Fan,et al.  Categorizing Nine Visual Classes using Local Appearance Descriptors , 2004 .

[32]  Dorra Sellami Masmoudi,et al.  Heterogeneous Image Retrieval System based on Features Extraction and SVM Classifier , 2008, ICINCO-SPSMC.

[33]  Mathias Kölsch,et al.  Emerging Topics in Computer Vision , 2004 .

[34]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[35]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[36]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[37]  Abdelghani Bellaachia,et al.  E-CAST: A Data Mining Algorithm for Gene Expression Data , 2002, BIOKDD.

[38]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[39]  Yan Zhang,et al.  On the Euclidean distance of images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[41]  S. Sclaroff,et al.  ImageRover: a content-based image browser for the World Wide Web , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[42]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[43]  Henning Biermann,et al.  Defining image content with multiple regions-of-interest , 1999, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL'99).

[44]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  E. Vicario,et al.  Using weighted spatial relationships in retrieval by visual contents , 1998 .

[46]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[47]  Paul A. Viola,et al.  Boosting Image Retrieval , 2004, International Journal of Computer Vision.

[48]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[49]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[50]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[51]  Danny Pascale,et al.  A Review of RGB Color Spaces , 2003 .

[52]  Pietro Perona,et al.  Automatic discovery of image families: Global vs. local features , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[53]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[54]  Michael W. Berry,et al.  Survey of Text Mining: Clustering, Classification, and Retrieval , 2007 .

[55]  Tomás Lozano-Pérez,et al.  A Framework for Multiple-Instance Learning , 1997, NIPS.

[56]  M. Maher Ben Ismail,et al.  Empirical Comparison of Automatic Image Annotation Systems , 2008, 2008 First Workshops on Image Processing Theory, Tools and Applications.

[57]  Nick Cercone,et al.  Local Triplet Pattern for Content-Based Image Retrieval , 2009, ICIAR.

[58]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[59]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[60]  Guojun Lu,et al.  Evaluation of similarity measurement for image retrieval , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[61]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[62]  Yixin Chen,et al.  MILES: Multiple-Instance Learning via Embedded Instance Selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Roberto Brunelli,et al.  COMPASS: an image retrieval system for distributed databases , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[64]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[65]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[66]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.