Highly Selective Synthesis of Light Aromatics from CO2 by Chromium-Doped ZrO2 Aerogels in Tandem with HZSM-5@SiO2 Catalyst

[1]  Yanqiang Huang,et al.  Preferential Synthesis of Toluene and Xylene from CO2 Hydrogenation in the Presence of Benzene through an Enhanced Coupling Reaction , 2022, ACS Catalysis.

[2]  N. Tsubaki,et al.  Capsule-Like Zeolite Catalyst Fabricated by Solvent-Free Strategy for para-Xylene Formation from CO Hydrogenation , 2021, Applied Catalysis B: Environmental.

[3]  N. Tsubaki,et al.  Multi-Promoters Regulated Iron Catalyst with Well-Matching Reverse Water-Gas Shift and Chain Propagation for Boosting CO2 Hydrogenation , 2021, Journal of CO2 Utilization.

[4]  Mingbo Wu,et al.  Boosting the synthesis of value-added aromatics directly from syngas via a Cr2O3 and Ga doped zeolite capsule catalyst , 2021, Chemical science.

[5]  Hengyong Xu,et al.  Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation , 2021 .

[6]  T. Abe,et al.  Selective Conversion of CO2 into para-Xylene over a ZnCr2O4-ZSM-5 Catalyst. , 2020, ChemSusChem.

[7]  Zhijie Chen,et al.  Advanced 3D Hollow-Out ZnZrO@C Combined with Hierarchical Zeolite for Highly Active and Selective CO Hydrogenation to Aromatics , 2020 .

[8]  F. Wei,et al.  Selective Conversion of Syngas into Tetramethylbenzene via an Aldol-Aromatic Mechanism , 2020 .

[9]  Wei Zhou,et al.  Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide , 2020 .

[10]  O. Safonova,et al.  Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts , 2019, Chinese Journal of Catalysis.

[11]  F. Xiao,et al.  Solvent-Free Synthesis of Core–Shell Zn/ZSM-5@Silicalite-1 Catalyst for Selective Conversion of Methanol to BTX Aromatics , 2019, Industrial & Engineering Chemistry Research.

[12]  Jingguang G. Chen,et al.  CO2 Hydrogenation to Methanol over ZrO2-Containing Catalysts: Insights into ZrO2 Induced Synergy , 2019, ACS Catalysis.

[13]  Yuan Fang,et al.  Combined methane dry reforming and methane partial oxidization for syngas production over high dispersion Ni based mesoporous catalyst , 2019, Fuel Processing Technology.

[14]  J. Gascón,et al.  Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics , 2019, ACS Catalysis.

[15]  Yong Yang,et al.  Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts , 2019, ACS Catalysis.

[16]  N. Tsubaki,et al.  Direct and Oriented Conversion of CO2 into Value-Added Aromatics. , 2019, Chemistry.

[17]  Hui Wang,et al.  Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation , 2019, ACS Catalysis.

[18]  Hailong Liu,et al.  Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts , 2019, Joule.

[19]  Xiaoxing Wang,et al.  Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst. , 2019, Chemical communications.

[20]  Xiao Jiang,et al.  Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst , 2019, Journal of CO2 Utilization.

[21]  Yuan Fang,et al.  Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO2 Hydrogenation Producing Value-Added Aromatics , 2019, ACS Catalysis.

[22]  Jier Huang,et al.  Unveiling Charge-Separation Dynamics in CdS/Metal–Organic Framework Composites for Enhanced Photocatalysis , 2018, ACS Catalysis.

[23]  H. Abe,et al.  Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology , 2018, Nature Catalysis.

[24]  Zhongmin Liu,et al.  Selective conversion of CO2 and H2 into aromatics , 2018, Nature Communications.

[25]  Yuhan Sun,et al.  Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis , 2018 .

[26]  Yuhan Sun,et al.  A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons , 2017 .

[27]  M. Nolan,et al.  Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis , 2017 .

[28]  Hailong Liu,et al.  A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol , 2017, Science Advances.

[29]  Qinghong Zhang,et al.  Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability , 2017 .

[30]  Ping Liu,et al.  Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. , 2017, Journal of the American Chemical Society.

[31]  Yuhan Sun,et al.  Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst , 2017, Nature Chemistry.

[32]  Hengyong Xu,et al.  Directly converting CO2 into a gasoline fuel , 2017, Nature Communications.

[33]  Xiulian Pan,et al.  Role of Manganese Oxide in Syngas Conversion to Light Olefins , 2017 .

[34]  P. D. de Jongh,et al.  Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis , 2016, Nature Communications.

[35]  C. Veloso,et al.  Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: Influence of reaction conditions and surface reaction studies , 2016 .

[36]  Onur Onel,et al.  Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization , 2016 .

[37]  F. Wei,et al.  Increasing para-Xylene Selectivity in Making Aromatics from Methanol with a Surface-Modified Zn/P/ZSM-5 Catalyst , 2015 .

[38]  B. Pan,et al.  Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. , 2014, Journal of the American Chemical Society.

[39]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[40]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[41]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[42]  J. Lercher,et al.  Influence of Surface Modification on the Acid Site Distribution of HZSM-5† , 2002 .

[43]  M. Inagaki,et al.  Synthesis of graphite intercalation compounds with CrVI compounds using CrO3 and HCl at room temperature , 1998 .

[44]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.