Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures.
暂无分享,去创建一个
Yi Liu | Liqin Su | Linyou Cao | Yifei Yu | Zhenghe Jin | Shi Hu | Lujun Huang | K. W. Kim | D. Geohegan | Liqin Su | Yong Zhang | Yifei Yu | Linyou Cao | Zhenghe Jin | Lujun Huang | Ki Wook Kim | David B Geohegan | Yi Liu | Shi Hu | Alexander A. Purezky | Yong Zhang | Alexander A Purezky
[1] A. Ramasubramaniam. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .
[2] Ruitao Lv,et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.
[3] Yu Huang,et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.
[4] Yu-Lun Chueh,et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.
[5] M. Dresselhaus,et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.
[6] Sefaattin Tongay,et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.
[7] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[8] R. Fivaz,et al. Electron-Phonon Interaction in Semiconducting Layer Structures , 1964 .
[9] Linyou Cao,et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.
[10] S. C. Moss,et al. Anisotropic mean-square displacements (MSD) in single-crystals of 2H- and 3R-MoS2 , 1983 .
[11] Andres Castellanos-Gomez,et al. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.
[12] Mauricio Terrones,et al. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.
[13] SUPARNA DUTTASINHA,et al. Van der Waals heterostructures , 2013, Nature.
[14] Arkady V. Krasheninnikov,et al. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.
[15] Walter R. L. Lambrecht,et al. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .
[16] T. Mueller,et al. Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.
[17] J. Shan,et al. Tightly bound trions in monolayer MoS2. , 2012, Nature materials.
[18] Aaron M. Jones,et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.
[19] A. M. van der Zande,et al. Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.
[20] K. Ko'smider,et al. Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.
[21] Shanshan Yao,et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS₂ films onto arbitrary substrates. , 2014, ACS nano.
[22] B. K. Gupta,et al. Artificially stacked atomic layers: toward new van der Waals solids. , 2012, Nano letters.
[23] Lain‐Jong Li,et al. Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.
[24] F. Jellinek,et al. Crystal structures of tungsten disulfide and diselenide , 1987 .
[25] K. Novoselov,et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.
[26] Jing Kong,et al. van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.
[27] Timothy C. Berkelbach,et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.
[28] Yi Liu,et al. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.
[29] Sefaattin Tongay,et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.
[30] Joachim Piprek,et al. Simulation of semiconductor optoelectronic devices , 2002 .
[31] C. Weisbuch,et al. Quantum Semiconductor Structures: Fundamentals and Applications , 1991 .
[32] E. Johnston-Halperin,et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.
[33] Jun Lou,et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.
[34] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[35] M. Terrones,et al. Extraordinary room-temperature photoluminescence in WS$_{2}$ monolayers , 2013 .
[36] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[37] T. Korn,et al. Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.
[38] F. Consadori,et al. Crystal Size Effects on the Exciton Absorption Spectrum of WSe 2 , 1970 .
[39] S. Haigh,et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.
[40] Boris I. Yakobson,et al. Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .
[41] Yu Zhang,et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.
[42] Eli Yablonovitch,et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.