Phylogenetics and speciation.

Species-level phylogenies derived from molecular data provide an indirect record of the speciation events that have led to extant species. This offers enormous potential for investigating the general causes and rates of speciation within clades. To make the most of this potential, we should ideally sample all the species in a higher group, such as a genus, ensure that those species reflect evolutionary entities within the group, and rule out the effects of other processes, such as extinction, as explanations for observed patterns. We discuss recent practical and theoretical advances in this area and outline how future work should benefit from incorporating data from genealogical and phylogeographical scales.

[1]  A. Furano,et al.  Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Rosenzweig,et al.  Species Diversity in Space and Time , 1995 .

[3]  M. Sanderson,et al.  Age and rate of diversification of the Hawaiian silversword alliance (Compositae). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Avise,et al.  Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  ダーウィン チャールス,et al.  The descent of man and selection in relation to sex , 1907 .

[6]  T. Kocher,et al.  Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  N. Gotelli,et al.  NULL MODELS IN ECOLOGY , 1996 .

[8]  Oliver G. Pybus,et al.  Testing macro–evolutionary models using incomplete molecular phylogenies , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  S. Nee,et al.  INFERRING SPECIATION RATES FROM PHYLOGENIES , 2001, Evolution; international journal of organic evolution.

[10]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[11]  Mark Ridley,et al.  Phylogeny, ecology, and behavior: A research program in comparative biology , 1991 .

[12]  W. Maddison Gene Trees in Species Trees , 1997 .

[13]  J. Podos Correlated evolution of morphology and vocal signal structure in Darwin's finches , 2001, Nature.

[14]  D. Schluter,et al.  Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae) , 1999, The American Naturalist.

[15]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[16]  Alec L. Panchen,et al.  Classification, Evolution, and the Nature of Biology , 1992 .

[17]  Michael J. Sanderson,et al.  A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy , 1997 .

[18]  C. Darwin The Descent of Man and Selection in Relation to Sex: INDEX , 1871 .

[19]  D. Schluter,et al.  The Ecology of Adaptive Radiation , 2000 .

[20]  R. DeSalle,et al.  GENE TREES, SPECIES TREES, AND SYSTEMATICS: A Cladistic Perspective , 1996 .

[21]  Terry W. Snell,et al.  Reconstructing ancestral character states: a critical reappraisal , 1998 .

[22]  Yoh Iwasa,et al.  INFERRING THE RATES OF BRANCHING AND EXTINCTION FROM MOLECULAR PHYLOGENIES , 1995, Evolution; international journal of organic evolution.

[23]  Michael L. Rosenzweig,et al.  Species Diversity in Space and Time , 1997 .

[24]  J. Cheverud,et al.  EPISTASIS AND THE EVOLUTION OF ADDITIVE GENETIC VARIANCE IN POPULATIONS THAT PASS THROUGH A BOTTLENECK , 1999, Evolution; international journal of organic evolution.

[25]  R M May,et al.  Extinction rates can be estimated from molecular phylogenies. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  A. Vogler,et al.  Testing whether ecological factors promote cladogenesis in a group of tiger beetles (Coleoptera: Cicindelidae) , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  R. Cowling,et al.  Plant diversity in mediterranean-climate regions. , 1996, Trends in ecology & evolution.

[28]  A. Burt,et al.  Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Schluter,et al.  Analysis of an evolutionary species–area relationship , 2000, Nature.

[30]  Loren H. Rieseberg,et al.  Gene trees and species trees are not the same , 2001 .

[31]  M. S. Roy Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  J. Huelsenbeck,et al.  A compound poisson process for relaxing the molecular clock. , 2000, Genetics.

[33]  H. A. Orr,et al.  “PATTERNS OF SPECIATION IN DROSOPHILA” REVISITED , 1997, Evolution; international journal of organic evolution.

[34]  Paul H. Harvey,et al.  New uses for new phylogenies , 1993, European Review.

[35]  A. Vogler,et al.  Detecting the Geographical Pattern of Speciation from Species‐Level Phylogenies , 2000, The American Naturalist.

[36]  Z. Yang,et al.  Estimation of primate speciation dates using local molecular clocks. , 2000, Molecular biology and evolution.

[37]  A. Brower Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  V Moulton,et al.  Likelihood analysis of phylogenetic networks using directed graphical models. , 2000, Molecular biology and evolution.

[39]  T. Dowling,et al.  The role of hybridization and introgression in the diversification of animals , 1997 .

[40]  Loren H. Rieseberg,et al.  Hybrid Origins of Plant Species , 1997 .

[41]  P H Harvey,et al.  Macroevolutionary inferences from primate phylogeny , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  D. O. Foighil,et al.  Transglobal comparisons of nuclear and mitochondrial genetic structure in a marine polyploid clam (Lasaea, Lasaeidae) , 2000, Heredity.

[43]  R. Chesser,et al.  MODES OF SPECIATION IN BIRDS: A TEST OF LYNCH'S METHOD , 1994, Evolution; international journal of organic evolution.

[44]  J. Coyne,et al.  LITTLE EVIDENCE FOR SYMPATRIC SPECIATION IN ISLAND BIRDS , 2000, Evolution; international journal of organic evolution.

[45]  J. Searle,et al.  Phylogenetics of the speciose and chromosomally variable rodent genus Ctenomys (Ctenomyidae, Octodontoidea), based on mitochondrial cytochrome b sequences , 2000 .

[46]  E. Mayr Animal Species and Evolution , 1964 .

[47]  J. Marzluff,et al.  Cryptic genetic variation and paraphyly in ravens , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  J. Klicka,et al.  Pleistocene effects on North American songbird evolution , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  J. M. Smith,et al.  The detection and measurement of recombination from sequence data. , 1999, Genetics.

[50]  G. Roderick,et al.  Speciation and phylogeography of Hawaiian terrestrial arthropods , 1998, Molecular ecology.

[51]  P. Pearson,et al.  Speciation in the fossil record. , 2001, Trends in ecology & evolution.

[52]  Gaston,et al.  Areas, cradles and museums: the latitudinal gradient in species richness. , 2000, Trends in ecology & evolution.

[53]  Michael J. Sanderson,et al.  Molecular Evolution and Adaptive Radiation , 1998 .

[54]  I. Lovette,et al.  Explosive speciation in the New World Dendroica warblers , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  D. Schluter Ecology and the origin of species. , 2001, Trends in ecology & evolution.

[56]  J. Avise,et al.  Pleistocene phylogeographic effects on avian populations and the speciation process , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  A. Burt,et al.  Recurrent invasion and extinction of a selfish gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Trewick Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora) , 2000, Molecular ecology.

[59]  N. Barton,et al.  Theory and speciation. , 2001, Trends in ecology & evolution.

[60]  Mader,et al.  Morphological evolution and genetic differentiation in Daphnia species complexes , 1999 .

[61]  J. Hey,et al.  The mind of the species problem. , 2001, Trends in ecology & evolution.

[62]  J. Slowinski,et al.  Evidence from molecular systematics for decreased avian diversification in the pleistocene Epoch. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. McCarter,et al.  The population genetics of the origin and divergence of the Drosophila simulans complex species. , 2000, Genetics.

[64]  J. Avise Phylogeography: The History and Formation of Species , 2000 .

[65]  G. Turner,et al.  Foraging of rocky habitat cichlid fishes in Lake Malawi: coexistence through niche partitioning? , 1999, Oecologia.

[66]  S. Xu,et al.  Phylogenetic analysis under reticulate evolution. , 2000, Molecular biology and evolution.

[67]  J. Fjelds Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities , 2022 .

[68]  Daniel J. Howard,et al.  Endless Forms: Species and Speciation , 1998 .

[69]  Mark V. Lomolino,et al.  Species Diversity in Space and Time. , 1996 .

[70]  Axel Meyer,et al.  Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  A. Vogler,et al.  Revealing the factors that promote speciation , 1998 .

[72]  J. Hey USING PHYLOGENETIC TREES TO STUDY SPECIATION AND EXTINCTION , 1992, Evolution; international journal of organic evolution.

[73]  B. Grant,et al.  Phylogeny of Darwin's finches as revealed by mtDNA sequences. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  H. A. Orr,et al.  PATTERNS OF SPECIATION IN DROSOPHILA , 1989, Evolution; international journal of organic evolution.

[75]  Sean Nee,et al.  PHYLOGENIES WITHOUT FOSSILS , 1994, Evolution; international journal of organic evolution.

[76]  K. Chan,et al.  Accounting for Mode of Speciation Increases Power and Realism of Tests of Phylogenetic Asymmetry , 1999, The American Naturalist.

[77]  B. Wiegmann,et al.  Molecular phylogenetics of the holly leafminers (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization. , 2000, Molecular phylogenetics and evolution.

[78]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .