Time-cost analysis of a quantum key distribution system clocked at 100 MHz.

We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz. The system includes classical postprocessing implemented via software, and is operated over a 12 km standard telecommunication dark fiber in a real-world environment. A time-cost analysis of the sifted, error-corrected, and secret key rates relative to the raw key rate is presented, and the scalability of our implementation with respect to higher secret key rates is discussed.

[1]  M. Dušek,et al.  Generalized beam-splitting attack in quantum cryptography with dim coherent states , 1999 .

[2]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[3]  C. Burrus,et al.  Number theoretic transforms to implement fast digital convolution , 1975 .

[4]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[5]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[6]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[7]  Ramesh Karri,et al.  A High-Speed Hardware Architecture for Universal Message Authentication Code , 2006, IEEE Journal on Selected Areas in Communications.

[8]  Hugo Krawczyk,et al.  UMAC: Fast and Secure Message Authentication , 1999, CRYPTO.

[9]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[10]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[11]  A. R. Dixon,et al.  Ultrashort dead time of photon-counting InGaAs avalanche photodiodes , 2009, 0905.2931.

[12]  Hai Xu,et al.  Detector dead-time effects and paralyzability in high-speed quantum key distribution , 2007 .

[13]  N. Lutkenhaus Security against individual attacks for realistic quantum key distribution , 1999, quant-ph/9910093.

[14]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[15]  Atsushi Uchida,et al.  Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. , 2009, Optics express.

[16]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[17]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[18]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[19]  W. Tittel,et al.  Proof-of-concept of real-world quantum key distribution with quantum frames , 2009, 0901.0612.

[20]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[21]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[22]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[23]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[24]  Christian Kurtsiefer,et al.  Breaking a quantum key distribution system through a timing side channel. , 2007, Optics express.

[25]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[26]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[27]  Herman Schmit,et al.  Implementation of near Shannon limit error-correcting codes using reconfigurable hardware , 2000, Proceedings 2000 IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00871).

[28]  G. Buller,et al.  Quantum key distribution system clocked at 2 GHz. , 2005, Optics express.

[29]  David A. Pearson,et al.  High‐speed QKD Reconciliation using Forward Error Correction , 2004 .

[30]  Patrick Rice,et al.  Numerical analysis of decoy state quantum key distribution protocols , 2008, 0901.0013.

[31]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[32]  Valerio Scarani,et al.  Finite-key analysis for practical implementations of quantum key distribution , 2008, 0811.2628.