Development of optimization procedures for application-specific chemical sensing

[1]  K. Gabriel,et al.  The biplot graphic display of matrices with application to principal component analysis , 1971 .

[2]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[3]  Andreas Hierlemann,et al.  Integrated array sensor for detecting organic solvents , 1995 .

[4]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[5]  Vladimir Cherkassky,et al.  Learning from data , 1998 .

[6]  R. Cavicchi,et al.  Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors , 1998 .

[7]  P. P. Lottici,et al.  Micro‐Raman investigation of iron oxide films and powders produced by sol–gel syntheses , 1999 .

[8]  Julian W. Gardner,et al.  Electronic noses: a review of signal processing techniques , 1999 .

[9]  J. Haugen,et al.  A calibration method for handling the temporal drift of solid state gas-sensors , 2000 .

[10]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[11]  J. Suehle,et al.  Microhotplate Platforms for Chemical Sensor Research , 2001 .

[12]  Josep Samitier,et al.  An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor , 2001 .

[13]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[14]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[15]  Fanli Meng,et al.  Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation , 2004 .

[16]  Jinhuai Liu,et al.  Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO/sub 2/ gas sensor , 2006, 2005 IEEE International Conference on Information Acquisition.

[17]  J. Brezmes,et al.  Optimised temperature modulation of metal oxide micro-hotplate gas sensors through multilevel pseudo random sequences , 2005 .

[18]  J. Brezmes,et al.  Optimized temperature modulation of micro-hotplate gas sensors through pseudorandom binary sequences , 2005, IEEE Sensors Journal.

[19]  D. Meier,et al.  Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance , 2006 .

[20]  Balaji Panchapakesan,et al.  Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates , 2006 .

[21]  Douglas C. Meier,et al.  Coupling Nanowire Chemiresistors with MEMS Microhotplate Gas Sensing Platforms , 2007 .

[22]  Yang-Kyu Choi,et al.  Chemical sensors based on nanostructured materials , 2007 .

[23]  Kurt D. Benkstein,et al.  The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors , 2007 .

[24]  S. Semancik,et al.  Bioinspired methodology for artificial olfaction. , 2008, Analytical chemistry.

[25]  Colette McDonagh,et al.  Optical chemical sensors. , 2008, Chemical reviews.

[26]  R. Potyrailo,et al.  Combinatorial and high-throughput development of sensing materials: the first 10 years. , 2008, Chemical reviews.

[27]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[28]  A. Hierlemann,et al.  Higher-order Chemical Sensing , 2007 .

[29]  Steve Semancik,et al.  Detecting chemical hazards with temperature-programmed microsensors: overcoming complex analytical problems with multidimensional databases. , 2009, Annual review of analytical chemistry.

[30]  Steve Semancik,et al.  Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments , 2009 .

[31]  Eduard Llobet,et al.  Optimized Feature Extraction for Temperature-Modulated Gas Sensors , 2009, J. Sensors.

[32]  Robert Akl,et al.  Nonuniform Grid-Based Coordinated Routing in Wireless Sensor Networks , 2009, J. Sensors.

[33]  B. Raman,et al.  Microsensors in Dynamic Backgrounds: Toward Real-Time Breath Monitoring , 2010, IEEE Sensors Journal.

[34]  R. Wu,et al.  Conductometric chemical sensor based on individual CuO nanowires , 2010, Nanotechnology.

[35]  V. Potin,et al.  Benzene monitoring by micro-machined sensors with SnO2 layer obtained by using micro-droplet deposition technique , 2011 .

[36]  G. Korotcenkov,et al.  Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) , 2011 .

[37]  S. Semancik,et al.  Feedback-enabled discrimination enhancement for temperature-programmed chemiresistive microsensors , 2011 .