Exponential time integration using Krylov subspaces

The application of exponential integrators based on Krylov techniques to large-scale simulations of complex fluid flows with multiple time-scales demonstrates the efficiency of these schemes in reducing the associated time-step restrictions due to numerical stiffness. Savings of approximately 50% can be achieved for simulations of the three-dimensional compressible Navier―Stokes equations while still maintaining a truncation error typical of explicit time-stepping schemes. Exponential time integration techniques of this type are particularly advantageous for fluid flows with a wide range of temporal scales such as low-Mach number, reactive or acoustically dominated flows.

[1]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[2]  Jörn Sesterhenn,et al.  A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes , 2000 .

[3]  A. Ostermann,et al.  Implementation of exponential Rosenbrock-type integrators , 2009 .

[4]  Christopher K. Newman,et al.  Exponential Integrators for the Incompressible Navier{Stokes Equations , 2003 .

[5]  Luc Giraud,et al.  On the Influence of the Orthogonalization Scheme on the Parallel Performance of GMRES , 1998, Euro-Par.

[6]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[7]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[8]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[9]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[10]  B. D. Semeraro,et al.  Application of Krylov exponential propagation to fluid dynamics equations , 1991 .

[11]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[12]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[13]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[14]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[15]  Richard B. Lehoucq,et al.  Large‐scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers , 2001 .

[16]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[17]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .