Credit card fraud forecasting model based on clustering analysis and integrated support vector machine

At present, with the popularization of credit cards, credit card fraud increases gradually. Based on this, this paper designs a credit card fraud prediction model based on cluster analysis and integrated support vector machine using computer technology. First of all, adjust and reduce the Unbalanced state based on K-means clustering analysis combined with more than half of the random samples. Secondly, the use of the idea of integrated learning to further deal with the Unbalanced state of the data and increase classifier’s awareness of minorities. Finally, we tested the algorithm, and the result showed that the proposed algorithm effectively reduced the cost of accidental injury, which provides a great possibility for the card issuer to effectively reduce the economic losses caused by credit card fraud, which has laid a good theoretical basis and foundation for practical application.

[1]  José Salvador Sánchez,et al.  An insight into the experimental design for credit risk and corporate bankruptcy prediction systems , 2014, Journal of Intelligent Information Systems.

[2]  SubudhiSharmila,et al.  Use of fuzzy clustering and support vector machine for detecting fraud in mobile telecommunication networks , 2016 .

[3]  Gui-ming Yang,et al.  Bed Permeability State Prediction Model of Sintering Process Based on Data Mining Technology , 2016 .

[4]  Ridong Zhang,et al.  Prediction of human promoter with Least Square Support Vector Machine based on Kernel Locality Preserving Projection , 2016 .

[5]  Dan Keun Sung,et al.  Hourly Solar Irradiance Prediction Based on Support Vector Machine and Its Error Analysis , 2017, IEEE Transactions on Power Systems.

[6]  Ruchuan Wang,et al.  Risk Prediction Model Based on Improved AdaBoost Method for Cloud Users , 2015 .

[7]  Mohiuddin Ahmed,et al.  Novel Approach for Network Traffic Pattern Analysis using Clustering-based Collective Anomaly Detection , 2015, Annals of Data Science.

[8]  Pourya Shamsolmoali,et al.  Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier , 2015 .

[9]  Bei Yu,et al.  Accurate lithography hotspot detection based on principal component analysis-support vector machine classifier with hierarchical data clustering , 2014 .

[10]  Masaki Takahashi,et al.  Dynamic time warping-based cluster analysis and support vector machine-based prediction of solar irradiance at multi-points in a wide area , 2016 .