Na2Ti3O7: an intercalation based anode for sodium-ion battery applications

We report here the electrochemical properties of Na2Ti3O7, a potential non-carbon based, low-voltage anode material for room temperature sodium ion battery applications. A solid-state route was used to prepare Na2Ti3O7. Further, XRD, SEM, TEM, HRTEM, SAED, XPS and EDX techniques were used to characterize the material. The Na/Na2Ti3O7 cell displayed a charge capacity of 177 mA h g−1 at 0.1 C rate. High rate and long term cyclic performance at different rates showed relatively stable storage capacities. Surprisingly, if the lower cut-off voltage is altered, the appearance of a new charge plateau is seen, with no apparent change in the discharge behaviour. The kinetics of sodium insertion and extraction are discussed utilizing CV and EIS techniques. We also report the sodium chemical diffusion coefficient of the Na2Ti3O7/CB electrode estimated using GITT.

[1]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[2]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[3]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[4]  S. Sharma,et al.  Electrochemical behavior of different structural states of the alloy Ti60Ni40 , 2011 .

[5]  G. Meng,et al.  Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A=Li, Na and K) , 2007 .

[6]  Liang Li,et al.  Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries , 2009 .

[7]  Tae-Hyun Nam,et al.  The discharge properties of Na/Ni3S2 cell at ambient temperature , 2008 .

[8]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[9]  J. Leckie,et al.  Sequestration of cadmium ions using titanate nanotube. , 2011, Journal of hazardous materials.

[10]  J. Sangster,et al.  C-Na (Carbon-Sodium) System , 2007 .

[11]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[12]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.

[13]  R. Ruffo,et al.  Layered Na(0.71)CoO(2): a powerful candidate for viable and high performance Na-batteries. , 2012, Physical chemistry chemical physics : PCCP.

[14]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[15]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[16]  P. J. Sebastian,et al.  The preparation of NaV1- xCrxPO4F cathode materials for sodium-ion battery , 2006 .

[17]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[18]  V. Blatov,et al.  Theoretical crystal chemistry of Mx(TO4)y sulfates and selenates: Topological analysis and classification of suprapolyhedral invariants , 2006 .

[19]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[20]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[21]  F. Gao,et al.  Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation. , 2011, Journal of colloid and interface science.

[22]  P. Balaya,et al.  Mesoporous TiO2 with high packing density for superior lithium storage , 2010 .

[23]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[24]  Jun-ichi Yamaki,et al.  Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries , 2009 .

[25]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[26]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[27]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[28]  Venkat Srinivasan,et al.  Resource constraints on the battery energy storage potential for grid and transportation applications , 2011 .

[29]  P. Lee,et al.  TiO2 microsphere for the removal of humic acid from water: Complex surface adsorption mechanisms , 2012 .

[30]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[31]  Zhonghua Li,et al.  First-principle calculations for electronic structure and bonding properties in layered Na2Ti3O7 , 2011 .

[32]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[33]  Lipeng Chen,et al.  Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries , 2011 .

[34]  Y. Idemoto,et al.  Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure , 2008 .

[35]  G. D. Hyushin Hydrothermal crystallization of Na2Ti6O13, Na2Ti3O7, and Na16Ti10O28 in the NaOH-TiO2-H2O system at a temperature of 500°C and a pressure of 0.1 GPa: The structural mechanism of self-assembly of titanates from suprapolyhedral clusters , 2006 .

[36]  Jie Xiao,et al.  Crystal Structure, Physical Properties, and Electrochemistry of Copper Substituted LiFePO4 Single Crystals , 2012 .

[37]  Linda F. Nazar,et al.  Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni)† , 2010 .

[38]  Xiqian Yu,et al.  Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS , 2011 .

[39]  C. Delmas,et al.  A Layered Iron(III) Phosphate Phase, Na3Fe3(PO4)4: Synthesis, Structure, and Electrochemical Properties as Positive Electrode in Sodium Batteries , 2010 .