Structure and photoluminescence of ZnS/CdS1-Se nanocomposite prepared by a two-step process

[1]  Y. Qi,et al.  The enhanced photoelectrochemical performance of PbS/ZnS quantum dots co-sensitized CdSe nanorods array heterostructure , 2019, Materials Science in Semiconductor Processing.

[2]  M. Molaei,et al.  Completely quenching of the trap states emission of CdSe QDs by CdS/ZnS shell growth using a one pot photochemical approach and application for dye photo-degradation , 2018, Journal of Luminescence.

[3]  Yingchun Yu,et al.  Fabrication of floating CdS/EP photocatalyst by facile liquid phase deposition for highly efficient degradation of Rhodamine B (RhB) under visible light irradiation , 2018, Materials Science in Semiconductor Processing.

[4]  Arun Sharma,et al.  Proficient surface modification of CdSe quantum dots for highly luminescent and biocompatible probes for bioimaging: A comparative experimental investigation , 2018, Journal of Luminescence.

[5]  B. Lalithadevi,et al.  Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method , 2018 .

[6]  L. Luo,et al.  Graphene/Semiconductor Hybrid Heterostructures for Optoelectronic Device Applications , 2018 .

[7]  Junjie Zhang,et al.  Effects of Ni 2+ concentration and vacuum annealing on structure, morphology and optical properties of Ni doped ZnS nanopowders synthesized by hydrothermal method , 2018 .

[8]  M. Molaei,et al.  A new and simple UV-assisted approach for synthesis of water soluble ZnS and transition metals doped ZnS nanoparticles (NPs) and investigating optical and photocatalyst properties , 2018 .

[9]  A. Alhazime,et al.  Effect of preparation methods and doping on the structural and tunable emissions of CdS , 2018 .

[10]  F. Gallucci,et al.  An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites , 2018 .

[11]  P. Anand,et al.  Boosting the Efficiency of Quantum Dot-Sensitized Solar Cells through Formation of the Cation-Exchanged Hole Transporting Layer. , 2018, Langmuir.

[12]  Yi-feng Su,et al.  Translocation of cadmium in Ocimum basilicum at low concentration of CdSSe nanoparticles , 2017 .

[13]  G. T. Chavan,et al.  Direct synthesis of quaternary Cd(Zn, S)Se thin films: Effects of composition , 2017 .

[14]  N. Revaprasadu,et al.  Synthesis of CdS quantum dots in an imidazolium based ionic liquid , 2017 .

[15]  M. Behboudnia,et al.  Systematics in morphological, structural and optoelectrical properties of nanocrystalline CdS thin films grown by electrodeposition method , 2017 .

[16]  K. Mynbaev,et al.  Luminescence of II–VI and III–V nanostructures , 2017 .

[17]  J. Chandrasekaran,et al.  Influence of pH on particle size, band-gap and activation energy of CdS nanoparticles synthesized at constant frequency ultrasonic wave irradiation , 2017 .

[18]  G. Qin,et al.  Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode. , 2017, ACS applied materials & interfaces.

[19]  Sandeep A. Waghuley,et al.  Photovoltaic application of ZnS loaded silicon dioxide rich composites , 2017 .

[20]  F. Laatar,et al.  Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties , 2016 .

[21]  G. Cao,et al.  Tailoring band structure of ternary CdSxSe1−x quantum dots for highly efficient sensitized solar cells , 2016 .

[22]  Z. Zou,et al.  On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. , 2016, ACS nano.

[23]  Xiaoping Shen,et al.  Organic-inorganic hybrid ZnS(butylamine) nanosheets and their transformation to porous ZnS. , 2016, Journal of colloid and interface science.

[24]  Xuefeng Ren,et al.  The preparation and assembly of CdSxSe1−x alloyed quantum dots on TiO2 nanowire arrays for quantum dot-sensitized solar cells , 2016, Journal of Materials Science: Materials in Electronics.

[25]  A. V. Spivey Group velocity dispersion of CdSSe/ZnS core–shell colloidal quantum dots measured with white light interferometry , 2016 .

[26]  J. Zhao,et al.  Effect of Gradient Alloying on Photoluminescence Blinking of Single CdSxSe1–x Nanocrystals , 2016 .

[27]  A. Akl,et al.  Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films , 2016 .

[28]  A. Akl,et al.  Estimation of some physical characteristics of chalcogenide bulk Cd50S50 − xSex glassy systems , 2015 .

[29]  G. Juska,et al.  Hybrid OLEDs with CdSSe1–x/ZnS core–shell quantum dots: An investigation of electroluminescence properties , 2015 .

[30]  J. Aguilar-Hernandez,et al.  Study on the introduction of Se into CdS thin films: Influence on the kinetics of the deposition and the structural and optical properties , 2015 .

[31]  H. Ghosh,et al.  Slow Electron Cooling Dynamics Mediated by Electron–Hole Decoupling in Highly Luminescent CdSxSe1–x Alloy Quantum Dots , 2015 .

[32]  Yitong Dong,et al.  Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis. , 2015, Journal of the American Chemical Society.

[33]  J. Aguilar-Hernandez,et al.  Nanocrystalline CdS1−xSex alloys as thin films prepared by chemical bath deposition: Effect of x on the structural and optical properties , 2014 .

[34]  Ramphal Sharma,et al.  Band gap engineering by substitution of S by Se in nanostructured CdS1−xSex thin films grown by soft chemical route for photosensor application , 2014 .

[35]  S. C. Sharma,et al.  Bioconjugation of anti estrogen alpha antibody with CdSSe/ZnS quantum dots for molecular sensing of a breast cancer antigen , 2014 .

[36]  C. Ning,et al.  Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems. , 2014, Nano letters.

[37]  Kun Zhang,et al.  Band alignment by ternary crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized solar cells , 2014 .

[38]  Jeffrey A. Christians,et al.  CdSeS Nanowires: Compositionally Controlled Band Gap and Exciton Dynamics. , 2014, Journal of Physical Chemistry Letters.

[39]  B. K. Reddy,et al.  Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles , 2013 .

[40]  D. K. Dwivedi,et al.  Study on structural, optical and electrical properties of CdS0.5Se0.5 thin films for photovoltaic applications , 2013 .

[41]  P. C. Patel,et al.  Synthesis of wurtzite ZnS nanocrystals at low temperature , 2013, Journal of Materials Science: Materials in Electronics.

[42]  C. Sow,et al.  Transient Photoconductivity of Ternary CdSSe Nanobelts As Measured by Time-Resolved Terahertz Spectroscopy , 2013 .

[43]  Serdar Özçelik,et al.  Developing a facile method for highly luminescent colloidal CdSxSe1−x ternary nanoalloys , 2013 .

[44]  Haw Yang,et al.  An accessible approach to preparing water-soluble Mn2+-doped (CdSSe)ZnS (core)shell nanocrystals for ratiometric temperature sensing. , 2011, ACS nano.

[45]  G. Jung,et al.  Composition-tuned ZnO--CdSSe core--shell nanowire arrays. , 2010, ACS nano.

[46]  K. Chattopadhyay,et al.  Synthesis of wurtzite-phase ZnS nanocrystal and its optical properties , 2009 .

[47]  K. G. Gopchandran,et al.  Studies on optical absorption and photoluminescence of thioglycerol-stabilized ZnS nanoparticles , 2009 .

[48]  V. Karavanskii,et al.  Formation and optical properties of CdSSe semiconductor nanocrystals in the silicate glass matrix , 2009 .

[49]  J. Zhang,et al.  Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals. , 2009, The journal of physical chemistry. A.

[50]  B. K. Reddy,et al.  ESR and photoluminescence properties of Cu doped ZnS nanoparticles. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[51]  S. Apte,et al.  CdS/CdSSe quantum dots in glass matrix , 2008 .

[52]  K. Chattopadhyay,et al.  Photoluminescence and field emission properties of ZnS:Mn nanoparticles synthesized by rf-magnetron sputtering technique , 2007 .

[53]  H. Idriss,et al.  TiO2 Nanobelts/CdSSe Quantum Dots Nanocomposite , 2007 .

[54]  W. Peng,et al.  Synthesis and photoluminescence of ZnS:Cu nanoparticles , 2006 .

[55]  S. Apte,et al.  Homogeneous growth of CdS/CdSSe nanoparticles in glass matrix , 2006 .

[56]  N. Karar,et al.  Structure and photoluminescence studies on ZnS:Mn nanoparticles , 2004 .

[57]  Dong-Jin Kim,et al.  Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals , 2004 .

[58]  V. A. Jitov,et al.  Hexagonal ZnCdS epilayers and CdSSe/ZnCdS QW structures on CdS(0001) and ZnCdS(0001) substrates grown by MOVPE , 2003 .

[59]  S. Qadri,et al.  SIZE-INDUCED TRANSITION-TEMPERATURE REDUCTION IN NANOPARTICLES OF ZNS , 1999 .

[60]  P. Prelovšek,et al.  From local to nonlocal Fermi liquid in doped antiferromagnets , 1998, cond-mat/9806191.

[61]  M. Olschewski,et al.  Luminescence studies of localized gap states in colloidal ZnS nanocrystals , 1998 .